메뉴 건너뛰기




Volumn 7143 LNCS, Issue , 2012, Pages 98-105

Representing feature quantization approach using spatial-temporal relation for action recognition

Author keywords

Action Recognition; Feature Quantization; Histogram; Spatio temporal Feature

Indexed keywords

ACTION RECOGNITION; ACTIVITY RECOGNITION; FEATURE QUANTIZATION; HISTOGRAM; INTEREST POINTS; QUANTIZATION APPROACH; SPATIAL TEMPORALS; SPATIO-TEMPORAL; VIDEO SURVEILLANCE;

EID: 84856057380     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-27387-2_13     Document Type: Conference Paper
Times cited : (4)

References (15)
  • 6
    • 78149490479 scopus 로고    scopus 로고
    • Action Recognition by Multiple Features and Hypersphere Multi-class SVM
    • Liu, J., Yang, J., Zhang, Y.: Action Recognition by Multiple Features and Hypersphere Multi-class SVM. In: 20th IEEE International Conference on ICPR, pp. 3744-3747 (2010)
    • (2010) 20th IEEE International Conference on ICPR , pp. 3744-3747
    • Liu, J.1    Yang, J.2    Zhang, Y.3
  • 12
    • 77955993558 scopus 로고    scopus 로고
    • Learning a Hierarchy of Discriminative Space-Time Neighborhood Features for Human Action Recognition
    • Kovashka, A., Grauman, K.: Learning a Hierarchy of Discriminative Space-Time Neighborhood Features for Human Action Recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2046-2053 (2010)
    • (2010) IEEE Conference on Computer Vision and Pattern Recognition , pp. 2046-2053
    • Kovashka, A.1    Grauman, K.2
  • 13
    • 78651064308 scopus 로고    scopus 로고
    • Making Full Use of Spatial-Temporal Interest Points: An Adaboost Aproach for Action Recognition
    • Yan, X., Luo, Y.: Making Full Use of Spatial-Temporal Interest Points: An Adaboost Aproach for Action Recognition. In: 17th IEEE International Conference on Image Processing, pp. 4677-4680 (2010)
    • (2010) 17th IEEE International Conference on Image Processing , pp. 4677-4680
    • Yan, X.1    Luo, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.