-
1
-
-
26644435164
-
-
Dept, of Psychology, Univ. of Minn., Minneapolis, MN. [Ackerman & Kanfer, 1993]
-
[Ackerman & Kanfer, 1993] Ackerman, P., and Kanfer, R. 1993. Kanfer-Ackerman Air Traffic Control Task© CD-ROM Database, Data-Collection Program, and Playback Program. Dept, of Psychology, Univ. of Minn., Minneapolis, MN.
-
(1993)
Kanfer-Ackerman Air Traffic Control Task© CD-ROM Database, Data-Collection Program, and Playback Program.
-
-
Ackerman, P.1
Kanfer, R.2
-
2
-
-
0000452640
-
Learning conjunctions of horn clauses
-
[Angluin, Frazier, fc Pitt, 1992]
-
[Angluin, Frazier, fc Pitt, 1992] Angluin, D.; Frazier, M.; and Pitt, L. 1992. Learning conjunctions of horn clauses. Machine Learning 9:147-164.
-
(1992)
Machine Learning
, vol.9
, pp. 147-164
-
-
Angluin, D.1
Frazier, M.2
Pitt, L.3
-
3
-
-
0000710299
-
Queries and concept learning
-
[Angluin, 1988]
-
[Angluin, 1988] Angluin, D. 1988. Queries and concept learning. Machine Learning 2:319-342.
-
(1988)
Machine Learning
, vol.2
, pp. 319-342
-
-
Angluin, D.1
-
4
-
-
0029408886
-
Pac-learning non-recursive prolog clauses
-
[Cohen, 1995a]
-
[Cohen, 1995a] Cohen, W. 1995a. Pac-learning non-recursive prolog clauses. Artificial Intelligence 79(1):1-38.
-
(1995)
Artificial Intelligence
, vol.79
, Issue.1
, pp. 1-38
-
-
Cohen, W.1
-
5
-
-
0000450110
-
Pac-learning recursive logic programs: Efficient algorithms
-
[Cohen, 1995b]
-
[Cohen, 1995b] Cohen, W. 1995b. Pac-learning recursive logic programs: efficient algorithms. Jl. of Al Research 2:500-539.
-
(1995)
Jl. of Al Research
, vol.2
, pp. 500-539
-
-
Cohen, W.1
-
6
-
-
0000450112
-
Pac-learning recursive logic programs: Negative results
-
[Cohen, 1995c]
-
[Cohen, 1995c] Cohen, W. 1995c. Pac-learning recursive logic programs: negative results. Jl. of Al Research 2:541-573.
-
(1995)
Jl. of Al Research
, vol.2
, pp. 541-573
-
-
Cohen, W.1
-
7
-
-
0342671724
-
Interactive concept learning and constructive induction by analogy
-
[De Raedt & Bruynooghe, 1992]
-
[De Raedt & Bruynooghe, 1992] De Raedt, L., and Bruynooghe, M, 1992. Interactive concept learning and constructive induction by analogy. Machine Learning 8(2):107- 150.
-
(1992)
Machine Learning
, vol.8
, Issue.2
, pp. 107-150
-
-
De Raedt, L.1
Bruynooghe, M.2
-
8
-
-
0026972455
-
Pac-learnability of determinate logic programs
-
[Džeroski, Muggleton, & Russell, 1992]
-
[Džeroski, Muggleton, & Russell, 1992] Džeroski, S.; Muggleton, S.; and Russell, S. 1992. Pac-learnability of determinate logic programs. In Proceedings of the Fifth Annual ACM Workshop on Computational Learning Theory, 128-135.
-
(1992)
Proceedings of the Fifth Annual ACM Workshop on Computational Learning Theory
, pp. 128-135
-
-
Džeroski, S.1
Muggleton, S.2
Russell, S.3
-
9
-
-
0028585769
-
HTN planning: Complexity and expressivity
-
AAAI Press. [Erol, Hendler, & Nau, 1994]
-
[Erol, Hendler, & Nau, 1994] Erol, K.; Hendler, J.; and Nau, D. 1994. HTN planning: complexity and expressivity. In Proceedings of the Twelfth National Conference on Artificial Intelligence (AAAI-94). AAAI Press.
-
(1994)
Proceedings of the Twelfth National Conference on Artificial Intelligence (AAAI-94).
-
-
Erol, K.1
Hendler, J.2
Nau, D.3
-
10
-
-
0015440625
-
Learning and executing generalized robot plans
-
[Fikes, Hart, k. Nilsson, 1972]
-
[Fikes, Hart, k. Nilsson, 1972] Fikes, R.; Hart, P.; and Nilsson, N. 1972. Learning and executing generalized robot plans. Artificial Intelligence 3:251-288.
-
(1972)
Artificial Intelligence
, vol.3
, pp. 251-288
-
-
Fikes, R.1
Hart, P.2
Nilsson, N.3
-
12
-
-
0030282756
-
CLASSIC learning
-
[Frazier & Pitt, 1996]
-
[Frazier & Pitt, 1996] Frazier, M., and Pitt, L. 1996. CLASSIC learning. Machine Learning 26:151-194.
-
(1996)
Machine Learning
, vol.26
, pp. 151-194
-
-
Frazier, M.1
Pitt, L.2
-
13
-
-
2542455833
-
Learning conjunctive concepts in structural domains
-
[Haussler, 1989]
-
[Haussler, 1989] Haussler, D. 1989. Learning conjunctive concepts in structural domains. Machine Learning 4:7-40.
-
(1989)
Machine Learning
, vol.4
, pp. 7-40
-
-
Haussler, D.1
-
15
-
-
8644240790
-
The case for using equality axioms in automatic demonstration
-
Springer-Verlag. [Kowalski, 1970]
-
[Kowalski, 1970] Kowalski, R. 1970. The case for using equality axioms in automatic demonstration. In Lecture Notes in Mathematics, volume 125. Springer-Verlag.
-
(1970)
Lecture Notes in Mathematics
, vol.125
-
-
Kowalski, R.1
-
16
-
-
0002248455
-
Unification revisited
-
Minker, J., ed., Morgan Kaufmann. [Lassez, Maher, & Marriott, 1988]
-
[Lassez, Maher, & Marriott, 1988] Lassez, J.-L.; Maher, M.; and Marriott, K. 1988. Unification revisited. In Minker, J., ed., Foundations of Deductive Databases and Logic Programming. Morgan Kaufmann.
-
(1988)
Foundations of Deductive Databases and Logic Programming.
-
-
Lassez, J.-L.1
Maher, M.2
Marriott, K.3
-
17
-
-
0003453263
-
-
(2nd ed.). Berlin: Springer-Verlag. [Lloyd, 1987]
-
[Lloyd, 1987] Lloyd, J. 1987. Foundations of Logic Programming (2nd ed.). Berlin: Springer-Verlag.
-
(1987)
Foundations of Logic Programming
-
-
Lloyd, J.1
-
18
-
-
0001770133
-
Learning by experimentation: Acquiring and refining problem-solving heuristics
-
Michalski, R., and et al., eds., Morgan Kaufmann. [Mitchell, Utgoff, & Banerji, 1983]
-
[Mitchell, Utgoff, & Banerji, 1983] Mitchell, T.; Utgoff, P.; and Banerji, R. 1983. Learning by experimentation: Acquiring and refining problem-solving heuristics. In Michalski, R., and et al., eds., Machine learning: An artificial intelligence approach, volume 1. Morgan Kaufmann.
-
(1983)
Machine learning: An artificial intelligence approach
, vol.1
-
-
Mitchell, T.1
Utgoff, P.2
Banerji, R.3
-
20
-
-
0029678893
-
Least generalizations and greatest specializations of sets of clauses
-
[Nienhuys-Cheng & de Wolf, 1996]
-
[Nienhuys-Cheng & de Wolf, 1996] Nienhuys-Cheng, S.-H., and de Wolf, R. 1996. Least generalizations and greatest specializations of sets of clauses. Jl. of AI Research 4:341-363.
-
(1996)
Jl. of AI Research
, vol.4
, pp. 341-363
-
-
Nienhuys-Cheng, S.-H.1
de Wolf, R.2
-
21
-
-
0003403154
-
-
Ph.D. Dissertation, University of Illinois, Urbana, IL. [Page, 1993]
-
[Page, 1993] Page, C. 1993. Anti-Unification in Constraint Logics: Foundations and Applications to Learnability in First-Order Logic, to Speed-up Learning, and to Deduction. Ph.D. Dissertation, University of Illinois, Urbana, IL.
-
(1993)
Anti-Unification in Constraint Logics: Foundations and Applications to Learnability in First-Order Logic, to Speed-up Learning, and to Deduction.
-
-
Page, C.1
-
22
-
-
0001602577
-
A note on inductive generalization
-
Meltzer, B., and Michie, D., eds., volume 5. New York: Elsevier North- Holland. [Plotkin, 1970]
-
[Plotkin, 1970] Plotkin, G. 1970. A note on inductive generalization. In Meltzer, B., and Michie, D., eds., Machine Intelligence, volume 5. New York: Elsevier North- Holland. 153-163.
-
(1970)
Machine Intelligence
, pp. 153-163
-
-
Plotkin, G.1
-
25
-
-
0008472635
-
Theory-guided empirical speedup learning of goal-decomposition rules
-
Morgan Kaufmann. [Reddy, Tadepalli, & Roncagliolo, 1996]
-
[Reddy, Tadepalli, & Roncagliolo, 1996] Reddy, C.; Tadepalli, P.; and Roncagliolo, S. 1996. Theory-guided empirical speedup learning of goal-decomposition rules. In Proceedings of the 13th International Conference on Machine Learning, 409-417. Morgan Kaufmann.
-
(1996)
Proceedings of the 13th International Conference on Machine Learning
, pp. 409-417
-
-
Reddy, C.1
Tadepalli, P.2
Roncagliolo, S.3
-
26
-
-
0025448521
-
The strength of weak learnability
-
[Schapire, 1990]
-
[Schapire, 1990] Schapire, R. 1990. The strength of weak learnability. Machine Learning 5:197-227.
-
(1990)
Machine Learning
, vol.5
, pp. 197-227
-
-
Schapire, R.1
|