메뉴 건너뛰기




Volumn 1297, Issue , 1997, Pages 243-255

Learning Horn definitions with equivalence and membership queries

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84856019798     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/3540635149_53     Document Type: Conference Paper
Times cited : (11)

References (26)
  • 2
    • 0000452640 scopus 로고
    • Learning conjunctions of horn clauses
    • [Angluin, Frazier, fc Pitt, 1992]
    • [Angluin, Frazier, fc Pitt, 1992] Angluin, D.; Frazier, M.; and Pitt, L. 1992. Learning conjunctions of horn clauses. Machine Learning 9:147-164.
    • (1992) Machine Learning , vol.9 , pp. 147-164
    • Angluin, D.1    Frazier, M.2    Pitt, L.3
  • 3
    • 0000710299 scopus 로고
    • Queries and concept learning
    • [Angluin, 1988]
    • [Angluin, 1988] Angluin, D. 1988. Queries and concept learning. Machine Learning 2:319-342.
    • (1988) Machine Learning , vol.2 , pp. 319-342
    • Angluin, D.1
  • 4
    • 0029408886 scopus 로고
    • Pac-learning non-recursive prolog clauses
    • [Cohen, 1995a]
    • [Cohen, 1995a] Cohen, W. 1995a. Pac-learning non-recursive prolog clauses. Artificial Intelligence 79(1):1-38.
    • (1995) Artificial Intelligence , vol.79 , Issue.1 , pp. 1-38
    • Cohen, W.1
  • 5
    • 0000450110 scopus 로고
    • Pac-learning recursive logic programs: Efficient algorithms
    • [Cohen, 1995b]
    • [Cohen, 1995b] Cohen, W. 1995b. Pac-learning recursive logic programs: efficient algorithms. Jl. of Al Research 2:500-539.
    • (1995) Jl. of Al Research , vol.2 , pp. 500-539
    • Cohen, W.1
  • 6
    • 0000450112 scopus 로고
    • Pac-learning recursive logic programs: Negative results
    • [Cohen, 1995c]
    • [Cohen, 1995c] Cohen, W. 1995c. Pac-learning recursive logic programs: negative results. Jl. of Al Research 2:541-573.
    • (1995) Jl. of Al Research , vol.2 , pp. 541-573
    • Cohen, W.1
  • 7
    • 0342671724 scopus 로고
    • Interactive concept learning and constructive induction by analogy
    • [De Raedt & Bruynooghe, 1992]
    • [De Raedt & Bruynooghe, 1992] De Raedt, L., and Bruynooghe, M, 1992. Interactive concept learning and constructive induction by analogy. Machine Learning 8(2):107- 150.
    • (1992) Machine Learning , vol.8 , Issue.2 , pp. 107-150
    • De Raedt, L.1    Bruynooghe, M.2
  • 10
    • 0015440625 scopus 로고
    • Learning and executing generalized robot plans
    • [Fikes, Hart, k. Nilsson, 1972]
    • [Fikes, Hart, k. Nilsson, 1972] Fikes, R.; Hart, P.; and Nilsson, N. 1972. Learning and executing generalized robot plans. Artificial Intelligence 3:251-288.
    • (1972) Artificial Intelligence , vol.3 , pp. 251-288
    • Fikes, R.1    Hart, P.2    Nilsson, N.3
  • 12
    • 0030282756 scopus 로고    scopus 로고
    • CLASSIC learning
    • [Frazier & Pitt, 1996]
    • [Frazier & Pitt, 1996] Frazier, M., and Pitt, L. 1996. CLASSIC learning. Machine Learning 26:151-194.
    • (1996) Machine Learning , vol.26 , pp. 151-194
    • Frazier, M.1    Pitt, L.2
  • 13
    • 2542455833 scopus 로고
    • Learning conjunctive concepts in structural domains
    • [Haussler, 1989]
    • [Haussler, 1989] Haussler, D. 1989. Learning conjunctive concepts in structural domains. Machine Learning 4:7-40.
    • (1989) Machine Learning , vol.4 , pp. 7-40
    • Haussler, D.1
  • 15
    • 8644240790 scopus 로고
    • The case for using equality axioms in automatic demonstration
    • Springer-Verlag. [Kowalski, 1970]
    • [Kowalski, 1970] Kowalski, R. 1970. The case for using equality axioms in automatic demonstration. In Lecture Notes in Mathematics, volume 125. Springer-Verlag.
    • (1970) Lecture Notes in Mathematics , vol.125
    • Kowalski, R.1
  • 17
  • 18
    • 0001770133 scopus 로고
    • Learning by experimentation: Acquiring and refining problem-solving heuristics
    • Michalski, R., and et al., eds., Morgan Kaufmann. [Mitchell, Utgoff, & Banerji, 1983]
    • [Mitchell, Utgoff, & Banerji, 1983] Mitchell, T.; Utgoff, P.; and Banerji, R. 1983. Learning by experimentation: Acquiring and refining problem-solving heuristics. In Michalski, R., and et al., eds., Machine learning: An artificial intelligence approach, volume 1. Morgan Kaufmann.
    • (1983) Machine learning: An artificial intelligence approach , vol.1
    • Mitchell, T.1    Utgoff, P.2    Banerji, R.3
  • 20
    • 0029678893 scopus 로고    scopus 로고
    • Least generalizations and greatest specializations of sets of clauses
    • [Nienhuys-Cheng & de Wolf, 1996]
    • [Nienhuys-Cheng & de Wolf, 1996] Nienhuys-Cheng, S.-H., and de Wolf, R. 1996. Least generalizations and greatest specializations of sets of clauses. Jl. of AI Research 4:341-363.
    • (1996) Jl. of AI Research , vol.4 , pp. 341-363
    • Nienhuys-Cheng, S.-H.1    de Wolf, R.2
  • 22
    • 0001602577 scopus 로고
    • A note on inductive generalization
    • Meltzer, B., and Michie, D., eds., volume 5. New York: Elsevier North- Holland. [Plotkin, 1970]
    • [Plotkin, 1970] Plotkin, G. 1970. A note on inductive generalization. In Meltzer, B., and Michie, D., eds., Machine Intelligence, volume 5. New York: Elsevier North- Holland. 153-163.
    • (1970) Machine Intelligence , pp. 153-163
    • Plotkin, G.1
  • 25
  • 26
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • [Schapire, 1990]
    • [Schapire, 1990] Schapire, R. 1990. The strength of weak learnability. Machine Learning 5:197-227.
    • (1990) Machine Learning , vol.5 , pp. 197-227
    • Schapire, R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.