메뉴 건너뛰기




Volumn 27, Issue , 2012, Pages 424-442

PSSP with dynamic weighted kernel fusion based on SVM-PHGS

Author keywords

Machine learning approach; Parallel hierarchical grid search; Protein secondary structure prediction; Support vector machines; Weighted kernel fusion

Indexed keywords

KERNEL FUSION; MACHINE-LEARNING; PARALLEL HIERARCHICAL GRID SEARCH; PROTEIN SECONDARY STRUCTURE PREDICTION; SUPPORT VECTOR;

EID: 84855959327     PISSN: 09507051     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.knosys.2011.11.002     Document Type: Article
Times cited : (23)

References (66)
  • 2
    • 33745259286 scopus 로고    scopus 로고
    • Protein secondary structure prediction for a single-sequence using hidden semi-Markov models
    • Z. Aydin, Y. Altunbasak, and M. Borodovsky Protein secondary structure prediction for a single-sequence using hidden semi-Markov models BMC Bioinformatics 7 2006 178
    • (2006) BMC Bioinformatics , vol.7 , pp. 178
    • Aydin, Z.1    Altunbasak, Y.2    Borodovsky, M.3
  • 3
    • 0033369033 scopus 로고    scopus 로고
    • Exploiting the past and the future in protein secondary structure prediction
    • P. Baldi, S. Brunak, P. Frasconi, G. Soda, and G. Pollastri Exploiting the past and the future in protein secondary structure prediction Bioinformatics 15 1999 937
    • (1999) Bioinformatics , vol.15 , pp. 937
    • Baldi, P.1    Brunak, S.2    Frasconi, P.3    Soda, G.4    Pollastri, G.5
  • 4
    • 0035023445 scopus 로고    scopus 로고
    • Predicting protein-protein interactions from primary structure
    • J.R. Bock, and D.A. Gough Predicting protein-protein interactions from primary structure Bioinformatics 17 2001 455
    • (2001) Bioinformatics , vol.17 , pp. 455
    • Bock, J.R.1    Gough, D.A.2
  • 5
    • 0028906598 scopus 로고
    • Neural networks for secondary structure and structural class predictions
    • J.M. Chandonia, and M. Karplus Neural networks for secondary structure and structural class predictions Protein Science 4 1995 275 285
    • (1995) Protein Science , vol.4 , pp. 275-285
    • Chandonia, J.M.1    Karplus, M.2
  • 8
    • 34249753618 scopus 로고
    • Support-vector networks
    • C. Cortes, and V. Vapnik Support-vector networks Machine Learning 20 1995 273 297
    • (1995) Machine Learning , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 9
    • 0033106244 scopus 로고    scopus 로고
    • Evaluation and improvement of multiple sequence methods for protein secondary structure prediction
    • J.A. Cuff, and G.J. Barton Evaluation and improvement of multiple sequence methods for protein secondary structure prediction Proteins: Structure, Function, and Bioinformatics 34 1999 508 519
    • (1999) Proteins: Structure, Function, and Bioinformatics , vol.34 , pp. 508-519
    • Cuff, J.A.1    Barton, G.J.2
  • 10
    • 0034663597 scopus 로고    scopus 로고
    • Application of multiple sequence alignment profiles to improve protein secondary structure prediction
    • J.A. Cuff, and G.J. Barton Application of multiple sequence alignment profiles to improve protein secondary structure prediction Proteins Structure Function and Genetics 40 2000 502 511
    • (2000) Proteins Structure Function and Genetics , vol.40 , pp. 502-511
    • Cuff, J.A.1    Barton, G.J.2
  • 12
    • 0028177302 scopus 로고
    • The prediction and orientation of α-helices from sequence alignments: The combined use of environment-dependent substitution tables, Fourier transform methods and helix capping rules
    • D. Donnelly, J.P. Overington, and T.L. Blundell The prediction and orientation of α-helices from sequence alignments: the combined use of environment-dependent substitution tables, Fourier transform methods and helix capping rules Protein Engineering 7 1994 645
    • (1994) Protein Engineering , vol.7 , pp. 645
    • Donnelly, D.1    Overington, J.P.2    Blundell, T.L.3
  • 13
    • 33847073796 scopus 로고    scopus 로고
    • Achieving 80% ten-fold cross-validated accuracy for secondary structure prediction by large-scale training
    • O. Dor, and Y. Zhou Achieving 80% ten-fold cross-validated accuracy for secondary structure prediction by large-scale training Proteins: Structure, Function, and Bioinformatics 66 2007 838 845
    • (2007) Proteins: Structure, Function, and Bioinformatics , vol.66 , pp. 838-845
    • Dor, O.1    Zhou, Y.2
  • 14
    • 70350738241 scopus 로고    scopus 로고
    • Predicting continuous local structure and the effect of its substitution for secondary structure in fragment-free protein structure prediction
    • E. Faraggi, Y. Yang, S. Zhang, and Y. Zhou Predicting continuous local structure and the effect of its substitution for secondary structure in fragment-free protein structure prediction Structure 17 2009 1515 1527
    • (2009) Structure , vol.17 , pp. 1515-1527
    • Faraggi, E.1    Yang, Y.2    Zhang, S.3    Zhou, Y.4
  • 17
    • 0030931336 scopus 로고    scopus 로고
    • Seventy-five percent accuracy in protein secondary structure prediction
    • D. Frishman, and P. Argos Seventy-five percent accuracy in protein secondary structure prediction Proteins: Structure, Function, and Genetics 27 1997 329 335
    • (1997) Proteins: Structure, Function, and Genetics , vol.27 , pp. 329-335
    • Frishman, D.1    Argos, P.2
  • 19
    • 1542346418 scopus 로고    scopus 로고
    • A novel method for protein secondary structure prediction using dual-layer SVM and profiles
    • J. Guo, H. Chen, Z. Sun, and Y. Lin A novel method for protein secondary structure prediction using dual-layer SVM and profiles Proteins: Structure, Function, and Bioinformatics 54 2004 738 743
    • (2004) Proteins: Structure, Function, and Bioinformatics , vol.54 , pp. 738-743
    • Guo, J.1    Chen, H.2    Sun, Z.3    Lin, Y.4
  • 21
    • 33644982752 scopus 로고    scopus 로고
    • Rule generation for protein secondary structure prediction with support vector machines and decision tree
    • J. He, H.J. Hu, R. Harrison, P.C. Tai, and Y. Pan Rule generation for protein secondary structure prediction with support vector machines and decision tree IEEE Transactions on NanoBioscience 5 2006 46 53
    • (2006) IEEE Transactions on NanoBioscience , vol.5 , pp. 46-53
    • He, J.1    Hu, H.J.2    Harrison, R.3    Tai, P.C.4    Pan, Y.5
  • 22
    • 0036505670 scopus 로고    scopus 로고
    • A comparison of methods for multiclass support vector machines
    • C.W. Hsu, and C.J. Lin A comparison of methods for multiclass support vector machines IEEE Transactions on Neural Networks 13 2002 415 425
    • (2002) IEEE Transactions on Neural Networks , vol.13 , pp. 415-425
    • Hsu, C.W.1    Lin, C.J.2
  • 23
    • 0035957531 scopus 로고    scopus 로고
    • A novel method of protein secondary structure prediction with high segment overlap measure: Support vector machine approach
    • S. Hua, and Z. Sun A novel method of protein secondary structure prediction with high segment overlap measure: support vector machine approach Journal of Molecular Biology 308 2001 397 407
    • (2001) Journal of Molecular Biology , vol.308 , pp. 397-407
    • Hua, S.1    Sun, Z.2
  • 24
    • 0033578684 scopus 로고    scopus 로고
    • Protein secondary structure prediction based on position-specific scoring matrices
    • D.T. Jones Protein secondary structure prediction based on position-specific scoring matrices Journal of Molecular Biology 292 1999 195 202
    • (1999) Journal of Molecular Biology , vol.292 , pp. 195-202
    • Jones, D.T.1
  • 25
    • 0020997912 scopus 로고
    • Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features
    • W. Kabsch, and C. Sander Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features Biopolymers 22 1983 2577 2637
    • (1983) Biopolymers , vol.22 , pp. 2577-2637
    • Kabsch, W.1    Sander, C.2
  • 26
    • 0024046664 scopus 로고
    • A multivariate analysis method for discriminating protein secondary structural segments
    • M. Kanehisa A multivariate analysis method for discriminating protein secondary structural segments Protein Engineering 2 1988 87
    • (1988) Protein Engineering , vol.2 , pp. 87
    • Kanehisa, M.1
  • 27
    • 33746267388 scopus 로고    scopus 로고
    • YASSPP: Better kernels and coding schemes lead to improvements in protein secondary structure prediction
    • G. Karypis YASSPP: better kernels and coding schemes lead to improvements in protein secondary structure prediction Proteins: Structure, Function, and Bioinformatics 64 2006 575 586
    • (2006) Proteins: Structure, Function, and Bioinformatics , vol.64 , pp. 575-586
    • Karypis, G.1
  • 28
    • 0141593924 scopus 로고    scopus 로고
    • Protein secondary structure prediction based on an improved support vector machines approach
    • H. Kim, and H. Park Protein secondary structure prediction based on an improved support vector machines approach Protein Engineering 16 2003 553
    • (2003) Protein Engineering , vol.16 , pp. 553
    • Kim, H.1    Park, H.2
  • 29
    • 0029804192 scopus 로고    scopus 로고
    • Identification and application of the concepts important for accurate and reliable protein secondary structure prediction
    • R.D. King, and M.J. Sternberg Identification and application of the concepts important for accurate and reliable protein secondary structure prediction Protein Science: A Publication of the Protein Society 5 1996 2298
    • (1996) Protein Science: A Publication of the Protein Society , vol.5 , pp. 2298
    • King, R.D.1    Sternberg, M.J.2
  • 31
    • 75649083757 scopus 로고    scopus 로고
    • Prediction of backbone dihedral angles and protein secondary structure using support vector machines
    • P. Kountouris, and J. Hirst Prediction of backbone dihedral angles and protein secondary structure using support vector machines BMC Bioinformatics 10 2009 437
    • (2009) BMC Bioinformatics , vol.10 , pp. 437
    • Kountouris, P.1    Hirst, J.2
  • 33
    • 13444266488 scopus 로고    scopus 로고
    • A simple and fast secondary structure prediction method using hidden neural networks
    • K. Lin, V.A. Simossis, W.R. Taylor, and J. Heringa A simple and fast secondary structure prediction method using hidden neural networks Bioinformatics 21 2005 152
    • (2005) Bioinformatics , vol.21 , pp. 152
    • Lin, K.1    Simossis, V.A.2    Taylor, W.R.3    Heringa, J.4
  • 34
    • 78649269515 scopus 로고    scopus 로고
    • Protein Secondary Structure Prediction Based on Multi-SVM Ensemble
    • L. Lin, S. Yang, R. Zuo, Protein Secondary Structure Prediction Based on Multi-SVM Ensemble, IEEE, 2010, pp. 356-358.
    • (2010) IEEE , pp. 356-358
    • Lin, L.1    Yang, S.2    Zuo, R.3
  • 35
    • 33847001252 scopus 로고    scopus 로고
    • Analysis of an optimal hidden Markov model for secondary structure prediction
    • J. Martin, J.F. Gibrat, and F. Rodolphe Analysis of an optimal hidden Markov model for secondary structure prediction BMC Structural Biology 6 2006 25
    • (2006) BMC Structural Biology , vol.6 , pp. 25
    • Martin, J.1    Gibrat, J.F.2    Rodolphe, F.3
  • 36
    • 33747586510 scopus 로고    scopus 로고
    • Improving the accuracy of protein secondary structure prediction using structural alignment
    • S. Montgomerie, S. Sundararaj, W. Gallin, and D. Wishart Improving the accuracy of protein secondary structure prediction using structural alignment BMC Bioinformatics 7 2006 301
    • (2006) BMC Bioinformatics , vol.7 , pp. 301
    • Montgomerie, S.1    Sundararaj, S.2    Gallin, W.3    Wishart, D.4
  • 37
    • 14944343430 scopus 로고    scopus 로고
    • Multi-class support vector machines for protein secondary structure prediction
    • M.N. Nguyen, and J.C. Rajapakse Multi-class support vector machines for protein secondary structure prediction Genome Informatics Series 2003 218 227
    • (2003) Genome Informatics Series , pp. 218-227
    • Nguyen, M.N.1    Rajapakse, J.C.2
  • 38
    • 15944362593 scopus 로고    scopus 로고
    • Two-stage Multi-class Support Vector Machines to Protein Secondary Structure Prediction
    • M.N. Nguyen, J.C. Rajapakse, Two-stage Multi-class Support Vector Machines to Protein Secondary Structure Prediction, Pacific Symposium on Biocomputing, vol. 10, 2005, pp. 346-357.
    • (2005) Pacific Symposium on Biocomputing , vol.10 , pp. 346-357
    • Nguyen, M.N.1    Rajapakse, J.C.2
  • 39
    • 0033933636 scopus 로고    scopus 로고
    • Cascaded multiple classifiers for secondary structure prediction
    • M. Ouali, and R.D. King Cascaded multiple classifiers for secondary structure prediction Protein Science 9 2000 1162 1176
    • (2000) Protein Science , vol.9 , pp. 1162-1176
    • Ouali, M.1    King, R.D.2
  • 40
    • 17444397116 scopus 로고    scopus 로고
    • Porter: A new, accurate server for protein secondary structure prediction
    • G. Pollastri, and A. McLysaght Porter: a new, accurate server for protein secondary structure prediction Bioinformatics 21 2005 1719
    • (2005) Bioinformatics , vol.21 , pp. 1719
    • Pollastri, G.1    McLysaght, A.2
  • 41
    • 0036568279 scopus 로고    scopus 로고
    • Improving the prediction of protein secondary structure in three and eight classes using recurrent neural networks and profiles
    • G. Pollastri, D. Przybylski, B. Rost, and P. Baldi Improving the prediction of protein secondary structure in three and eight classes using recurrent neural networks and profiles Proteins: Structure, Function, and Genetics 47 2002 228 235
    • (2002) Proteins: Structure, Function, and Genetics , vol.47 , pp. 228-235
    • Pollastri, G.1    Przybylski, D.2    Rost, B.3    Baldi, P.4
  • 42
    • 0020648054 scopus 로고
    • Theory of protein secondary structure and algorithm of its prediction
    • O.B. Ptitsyn, and A.V. Finkelstein Theory of protein secondary structure and algorithm of its prediction Biopolymers 22 1983 15 25
    • (1983) Biopolymers , vol.22 , pp. 15-25
    • Ptitsyn, O.B.1    Finkelstein, A.V.2
  • 43
    • 0023803244 scopus 로고
    • Predicting the secondary structure of globular proteins using neural network models
    • N. Qian, and T.J. Sejnowski Predicting the secondary structure of globular proteins using neural network models Journal of Molecular Biology 202 1988 865 884
    • (1988) Journal of Molecular Biology , vol.202 , pp. 865-884
    • Qian, N.1    Sejnowski, T.J.2
  • 44
    • 0023927904 scopus 로고
    • Identification of structural motifs from protein coordinate data: Secondary structure and first-level supersecondary structure
    • F.M. Richards, and C.E. Kundrot Identification of structural motifs from protein coordinate data: Secondary structure and first-level supersecondary structure Proteins: Structure, Function, and Bioinformatics 3 1988 71 84
    • (1988) Proteins: Structure, Function, and Bioinformatics , vol.3 , pp. 71-84
    • Richards, F.M.1    Kundrot, C.E.2
  • 45
    • 0029984070 scopus 로고    scopus 로고
    • Improving prediction of protein secondary structure using structured neural networks and multiple sequence alignments
    • S.K. Riis, and A. Krogh Improving prediction of protein secondary structure using structured neural networks and multiple sequence alignments Journal of Computational Biology 3 1996 163 183
    • (1996) Journal of Computational Biology , vol.3 , pp. 163-183
    • Riis, S.K.1    Krogh, A.2
  • 47
    • 0017105767 scopus 로고
    • Conformational properties of amino acid residues in globular proteins
    • B. Robson, and E. Suzuki Conformational properties of amino acid residues in globular proteins Journal of Molecular Biology 107 1976 327 356
    • (1976) Journal of Molecular Biology , vol.107 , pp. 327-356
    • Robson, B.1    Suzuki, E.2
  • 48
    • 0026009212 scopus 로고
    • Prediction of protein backbone conformation based on seven structure assignments: Influence of local interactions
    • M.J. Rooman, J.P.A. Kocher, and S.J. Wodak Prediction of protein backbone conformation based on seven structure assignments: influence of local interactions Journal of Molecular Biology 221 1991 961 979
    • (1991) Journal of Molecular Biology , vol.221 , pp. 961-979
    • Rooman, M.J.1    Kocher, J.P.A.2    Wodak, S.J.3
  • 49
    • 0027291015 scopus 로고
    • Prediction of protein secondary structure at better than 70% accuracy
    • B. Rost, and C. Sander Prediction of protein secondary structure at better than 70% accuracy Journal of Molecular Biology 232 1993 584
    • (1993) Journal of Molecular Biology , vol.232 , pp. 584
    • Rost, B.1    Sander, C.2
  • 53
    • 0028965118 scopus 로고
    • Prediction of protein secondary structure by combining nearest-neighbor algorithms and multiple sequence alignments
    • A.A. Salamov, and V.V. Solovyev Prediction of protein secondary structure by combining nearest-neighbor algorithms and multiple sequence alignments Journal of Molecular Biology 247 1995 11 15
    • (1995) Journal of Molecular Biology , vol.247 , pp. 11-15
    • Salamov, A.A.1    Solovyev, V.V.2
  • 57
    • 55949118135 scopus 로고    scopus 로고
    • A protein secondary structure prediction framework based on the Extreme Learning Machine
    • G. Wang, Y. Zhao, and D. Wang A protein secondary structure prediction framework based on the Extreme Learning Machine Neurocomputing 72 2008 262 268
    • (2008) Neurocomputing , vol.72 , pp. 262-268
    • Wang, G.1    Zhao, Y.2    Wang, D.3
  • 58
    • 36049007258 scopus 로고    scopus 로고
    • An evolutionary method for learning HMM structure: Prediction of protein secondary structure
    • K.J. Won, T. Hamelryck, A. Prügel-Bennett, and A. Krogh An evolutionary method for learning HMM structure: prediction of protein secondary structure BMC Bioinformatics 8 2007 357
    • (2007) BMC Bioinformatics , vol.8 , pp. 357
    • Won, K.J.1    Hamelryck, T.2    Prügel-Bennett, A.3    Krogh, A.4
  • 61
    • 77955376256 scopus 로고    scopus 로고
    • Protein secondary structure prediction based on improved SVM method in compound pyramid model
    • Publishing
    • B. Yang, W. Qu, Y. Zhai, H. Sui, Protein secondary structure prediction based on improved SVM method in compound pyramid model, in: Control and Decision Conference (CCDC), Publishing, 2010, pp. 4405-4410.
    • (2010) Control and Decision Conference (CCDC) , pp. 4405-4410
    • Yang, B.1    Qu, W.2    Zhai, Y.3    Sui, H.4
  • 62
    • 78650804979 scopus 로고    scopus 로고
    • Predicting protein secondary structure using a mixed-modal SVM method in a compound pyramid model
    • B. Yang, Q. Wu, Z. Ying, and H. Sui Predicting protein secondary structure using a mixed-modal SVM method in a compound pyramid model Knowledge-Based Systems 2011 304 313
    • (2011) Knowledge-Based Systems , pp. 304-313
    • Yang, B.1    Wu, Q.2    Ying, Z.3    Sui, H.4
  • 63
    • 84855970792 scopus 로고    scopus 로고
    • Publishing
    • M.H. Zangooei, S. Jalili, Publishing, 2011. < http://www.modares.ac. ir//enpage/systems/index/Schools/ece/grp/cmp/res/lab/SCSLAB/Project/Project1 >.
    • (2011)
    • Zangooei, M.H.1    Jalili, S.2
  • 65
    • 0030581145 scopus 로고    scopus 로고
    • The use of amino acid patterns of classified helices and strands in secondary structure prediction
    • Z.Y. Zhu, and T.L. Blundell The use of amino acid patterns of classified helices and strands in secondary structure prediction Journal of Molecular Biology 260 1996 261 276
    • (1996) Journal of Molecular Biology , vol.260 , pp. 261-276
    • Zhu, Z.Y.1    Blundell, T.L.2
  • 66
    • 0023660653 scopus 로고
    • Prediction of protein secondary structure and active sites using the alignment of homologous sequences
    • M.J. Zvelebil, G.J. Barton, W.R. Taylor, and M.J.E. Sternberg Prediction of protein secondary structure and active sites using the alignment of homologous sequences Journal of Molecular Biology 195 1987 957 961
    • (1987) Journal of Molecular Biology , vol.195 , pp. 957-961
    • Zvelebil, M.J.1    Barton, G.J.2    Taylor, W.R.3    Sternberg, M.J.E.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.