-
1
-
-
0000241853
-
Deterministic nonperiodic flow
-
10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
-
E.N. Lorenz 1963 Deterministic nonperiodic flow J. Atmos. Sci. 20 130 141 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
-
(1963)
J. Atmos. Sci.
, vol.20
, pp. 130-141
-
-
Lorenz, E.N.1
-
2
-
-
68649124586
-
Generating chaos in injection-synchronized Gunn oscillator: An experimental approach
-
10.4103/0377-2063.54894
-
J. Chakravorty T. Banerjee R. Ghatak A. Bose B.C. Sarkar 2009 Generating chaos in injection-synchronized Gunn oscillator: an experimental approach IETE J. Res. 55 106 111 10.4103/0377-2063.54894
-
(2009)
IETE J. Res.
, vol.55
, pp. 106-111
-
-
Chakravorty, J.1
Banerjee, T.2
Ghatak, R.3
Bose, A.4
Sarkar, B.C.5
-
3
-
-
56049119376
-
Chaotic synchronization with experimental application to secure communication
-
B. Nana P. Woafo S. Domngang 2009 Chaotic synchronization with experimental application to secure communication Commun. Nonlinear Sci. Numer. Simul. 14 629 655
-
(2009)
Commun. Nonlinear Sci. Numer. Simul.
, vol.14
, pp. 629-655
-
-
Nana, B.1
Woafo, P.2
Domngang, S.3
-
4
-
-
57849118261
-
Multi-user receivers for synchronous and asynchronous transmission for chaos-based multiple-access systems
-
10.1016/j.sigpro.2008.10.015 1157.94326
-
M. Coulon D. Roviras 2009 Multi-user receivers for synchronous and asynchronous transmission for chaos-based multiple-access systems Signal Process. 89 583 598 10.1016/j.sigpro.2008.10.015 1157.94326
-
(2009)
Signal Process.
, vol.89
, pp. 583-598
-
-
Coulon, M.1
Roviras, D.2
-
5
-
-
61349120134
-
Low-density codes based on chaotic systems for simple encoding
-
10.1109/TCSI.2008.2008433
-
S. Kozic M. Hasler 2009 Low-density codes based on chaotic systems for simple encoding IEEE Trans. Circuits Syst. I 56 405 415 10.1109/TCSI.2008. 2008433
-
(2009)
IEEE Trans. Circuits Syst. i
, vol.56
, pp. 405-415
-
-
Kozic, S.1
Hasler, M.2
-
9
-
-
33846082720
-
A new chaotic system and its circuit realization
-
DOI 10.1088/1009-1963/15/12/018, 018
-
G.Y. Wang S.S. Qui H.W. Li C.F. Li Y. Zheng 2006 A new chaotic system and its circuit realization Chin. Phys. 15 2872 2877 10.1088/1009-1963/15/12/018 (Pubitemid 46070072)
-
(2006)
Chinese Physics
, vol.15
, Issue.12
, pp. 2872-2877
-
-
Wang, G.-Y.1
Qiu, S.-S.2
Li, H.-W.3
Li, C.-F.4
Zheng, Y.5
-
10
-
-
40549115278
-
A new three-dimensional autonomous chaotic oscillation system
-
10.1088/1742-6596/96/1/012173
-
C. Liu L. Liu 2008 A new three-dimensional autonomous chaotic oscillation system J. Phys. Conf. Ser. 96 012173 10.1088/1742-6596/96/1/012173
-
(2008)
J. Phys. Conf. Ser.
, vol.96
, pp. 012173
-
-
Liu, C.1
Liu, L.2
-
11
-
-
45849103151
-
A single three-wing or four-wing chaotic attractor generated from a three-dimensional smooth quadratic autonomous system
-
10.1016/j.chaos.2007.01.058 1152.37312 2435612
-
Z. Chen Y. Yang Z. Yuan 2008 A single three-wing or four-wing chaotic attractor generated from a three-dimensional smooth quadratic autonomous system Chaos Solitons Fractals 38 1187 1196 10.1016/j.chaos.2007.01.058 1152.37312 2435612
-
(2008)
Chaos Solitons Fractals
, vol.38
, pp. 1187-1196
-
-
Chen, Z.1
Yang, Y.2
Yuan, Z.3
-
12
-
-
67349148897
-
3-scroll and 4-scroll chaotic attractors generated from a new 3-D quadratic autonomous system
-
10.1007/s11071-008-9417-4 1204.70021
-
L. Wang 2009 3-scroll and 4-scroll chaotic attractors generated from a new 3-D quadratic autonomous system Nonlinear Dyn. 56 453 462 10.1007/s11071-008-9417-4 1204.70021
-
(2009)
Nonlinear Dyn.
, vol.56
, pp. 453-462
-
-
Wang, L.1
-
13
-
-
69549123872
-
A novel three-dimensional autonomous chaotic system generating two-, three- and four-scroll attractors
-
10.1016/j.physleta.2009.07.088 2571878
-
S. Dadras H.R. Momeni 2009 A novel three-dimensional autonomous chaotic system generating two-, three- and four-scroll attractors Phys. Lett. A 373 3637 3642 10.1016/j.physleta.2009.07.088 2571878
-
(2009)
Phys. Lett. A
, vol.373
, pp. 3637-3642
-
-
Dadras, S.1
Momeni, H.R.2
-
14
-
-
21344495201
-
Lorenz attractor: From differential equations with piecewise-linear terms
-
10.1142/S0218127493000155 0873.34045 1218724
-
E. Baghious P. Jarry 1993 Lorenz attractor: From differential equations with piecewise-linear terms Int. J. Bifurc. Chaos 3 201 210 10.1142/ S0218127493000155 0873.34045 1218724
-
(1993)
Int. J. Bifurc. Chaos
, vol.3
, pp. 201-210
-
-
Baghious, E.1
Jarry, P.2
-
16
-
-
0036658347
-
Experimental verification of the butterfly attractor in a modified Lorenz system
-
10.1142/S0218127402005364
-
S. Ozoguz A. Elwakil M. Kennedy 2002 Experimental verification of the butterfly attractor in a modified Lorenz system Int. J. Bifurc. Chaos 12 1627 1632 10.1142/S0218127402005364
-
(2002)
Int. J. Bifurc. Chaos
, vol.12
, pp. 1627-1632
-
-
Ozoguz, S.1
Elwakil, A.2
Kennedy, M.3
-
17
-
-
33745299462
-
Four-wing attractors: From pseudo to real
-
DOI 10.1142/S0218127406015180, PII S0218127406015180
-
G. Qi G. Chen S. Li Y. Zhang 2006 Four-wing attractors: From pseudo to real Int. J. Bifurc. Chaos 16 859 885 10.1142/S0218127406015180 1111.37025 2234260 (Pubitemid 43936687)
-
(2006)
International Journal of Bifurcation and Chaos
, vol.16
, Issue.4
, pp. 859-885
-
-
Qi, G.1
Chen, G.2
Li, S.3
Zhang, Y.4
-
18
-
-
52149102281
-
Generation of a four-wing chaotic attractor by two weakly-coupled Lorenz systems
-
10.1142/S0218127408021580 1156.37006
-
G. Grassi F.L. Severance E.D. Mashev B.J. Bazuin D.A. Miller 2008 Generation of a four-wing chaotic attractor by two weakly-coupled Lorenz systems Int. J. Bifurc. Chaos 18 2089 2094 10.1142/S0218127408021580 1156.37006
-
(2008)
Int. J. Bifurc. Chaos
, vol.18
, pp. 2089-2094
-
-
Grassi, G.1
Severance, F.L.2
Mashev, E.D.3
Bazuin, B.J.4
Miller, D.A.5
-
19
-
-
56349150970
-
Novel four-wing and eight-wing attractors using coupled chaotic Lorenz systems
-
10.1088/1674-1056/17/9/017
-
G. Grassi 2008 Novel four-wing and eight-wing attractors using coupled chaotic Lorenz systems Chin. Phys. B 17 3247 3251 10.1088/1674-1056/17/9/017
-
(2008)
Chin. Phys. B
, vol.17
, pp. 3247-3251
-
-
Grassi, G.1
-
20
-
-
78049530202
-
Analysis of a new 3D smooth autonomous system with different wing chaotic attractors and transient chaos
-
10.1007/s11071-010-9726-2 05841014 2737002
-
S. Dadras H.R. Momeni G. Qi 2010 Analysis of a new 3D smooth autonomous system with different wing chaotic attractors and transient chaos Nonlinear Dyn. 62 391 405 10.1007/s11071-010-9726-2 05841014 2737002
-
(2010)
Nonlinear Dyn.
, vol.62
, pp. 391-405
-
-
Dadras, S.1
Momeni, H.R.2
Qi, G.3
-
21
-
-
63849188557
-
Yet another 3D quadratic autonomous system generating three-wing and four-wing chaotic attractors
-
10.1063/1.3070648 2513755
-
L. Wang 2009 Yet another 3D quadratic autonomous system generating three-wing and four-wing chaotic attractors Chaos 19 013107 10.1063/1.3070648 2513755
-
(2009)
Chaos
, vol.19
, pp. 013107
-
-
Wang, L.1
-
22
-
-
77953558703
-
Generating one-, two-, three- and four-scroll attractors from a novel four-dimensional smooth autonomous chaotic system
-
10.1088/1674-1056/19/6/060506
-
S. Dadras H.R. Momeni 2010 Generating one-, two-, three- and four-scroll attractors from a novel four-dimensional smooth autonomous chaotic system Chin. Phys. B 19 060506 10.1088/1674-1056/19/6/060506
-
(2010)
Chin. Phys. B
, vol.19
, pp. 060506
-
-
Dadras, S.1
Momeni, H.R.2
-
23
-
-
0000548789
-
An equation for hyperchaos
-
10.1016/0375-9601(79)90150-6 0996.37502 588951
-
O.E. Rössler 1979 An equation for hyperchaos Phys. Lett. A 71 155 157 10.1016/0375-9601(79)90150-6 0996.37502 588951
-
(1979)
Phys. Lett. A
, vol.71
, pp. 155-157
-
-
Rössler, O.E.1
-
27
-
-
33746628202
-
The generation of a hyperchaotic system based on a three-dimensional autonomous chaotic system
-
DOI 10.1088/1009-1963/15/6/015, 015
-
J.Z. Wang Z.Q. Chen Z.Z. Yuan 2006 The generation of a hyperchaotic system based on a three-dimensional autonomous chaotic system Chin. Phys. 15 1216 1225 10.1088/1009-1963/15/6/015 (Pubitemid 44149728)
-
(2006)
Chinese Physics
, vol.15
, Issue.6
, pp. 1216-1225
-
-
Wang, J.-Z.1
Chen, Z.-Q.2
Yuan, Z.-Z.3
-
28
-
-
36049050035
-
Generation and suppression of a new hyperchaotic system with double hyperchaotic attractors
-
10.1016/j.physleta.2007.06.038 1209.37033 2412425
-
Q. Jia 2007 Generation and suppression of a new hyperchaotic system with double hyperchaotic attractors Phys. Lett. A 371 410 415 10.1016/j.physleta. 2007.06.038 1209.37033 2412425
-
(2007)
Phys. Lett. A
, vol.371
, pp. 410-415
-
-
Jia, Q.1
-
29
-
-
34248386538
-
Hyperchaos generated from the Lorenz chaotic system and its control
-
10.1016/j.physleta.2007.02.024 1203.93086
-
Q. Jia 2007 Hyperchaos generated from the Lorenz chaotic system and its control Phys. Lett. A 366 217 222 10.1016/j.physleta.2007.02.024 1203.93086
-
(2007)
Phys. Lett. A
, vol.366
, pp. 217-222
-
-
Jia, Q.1
-
30
-
-
36849001219
-
On a new hyperchaotic system
-
10.1016/j.physleta.2007.10.082 1217.37032 2374285
-
G. Qi M.A. Wyk B.J. Wyk G. Chen 2008 On a new hyperchaotic system Phys. Lett. A 372 124 136 10.1016/j.physleta.2007.10.082 1217.37032 2374285
-
(2008)
Phys. Lett. A
, vol.372
, pp. 124-136
-
-
Qi, G.1
Wyk, M.A.2
Wyk, B.J.3
Chen, G.4
-
31
-
-
49749102772
-
Analysis of a novel four-dimensional hyperchaotic system
-
L. Liu C. Liu Y. Zhang 2008 Analysis of a novel four-dimensional hyperchaotic system Chin. J. Phys. 46 386 393
-
(2008)
Chin. J. Phys.
, vol.46
, pp. 386-393
-
-
Liu, L.1
Liu, C.2
Zhang, Y.3
-
32
-
-
49749119115
-
Local bifurcation analysis of a four-dimensional hyperchaotic system
-
10.1088/1674-1056/17/7/015
-
W.J. Wu Z.Q. Chan Z.Z. Yuan 2008 Local bifurcation analysis of a four-dimensional hyperchaotic system Chin. Phys. B 17 2420 2432 10.1088/1674-1056/17/7/015
-
(2008)
Chin. Phys. B
, vol.17
, pp. 2420-2432
-
-
Wu, W.J.1
Chan, Z.Q.2
Yuan, Z.Z.3
-
33
-
-
43049141911
-
Chaotic and hyperchaotic attractors of a complex nonlinear system
-
10.1088/1751-8113/41/5/055104 2433424
-
G.M. Mahmoud M.A. Al-Kashif A.A. Farghaly 2008 Chaotic and hyperchaotic attractors of a complex nonlinear system J. Phys. A, Math. Theor. 41 055104 10.1088/1751-8113/41/5/055104 2433424
-
(2008)
J. Phys. A, Math. Theor.
, vol.41
, pp. 055104
-
-
Mahmoud, G.M.1
Al-Kashif, M.A.2
Farghaly, A.A.3
-
35
-
-
71649097405
-
A new hyperchaotic system and its synchronization
-
10.1016/j.amc.2009.09.060 1188.34051 2576807
-
S. Zheng G. Dong Q. Bi 2010 A new hyperchaotic system and its synchronization Appl. Math. Comput. 215 3192 3200 10.1016/j.amc.2009.09.060 1188.34051 2576807
-
(2010)
Appl. Math. Comput.
, vol.215
, pp. 3192-3200
-
-
Zheng, S.1
Dong, G.2
Bi, Q.3
-
36
-
-
70450280831
-
On the hyperchaotic complex Lü system
-
10.1007/s11071-009-9513-0 1183.70053 2563618
-
G.M. Mahmoud E.E. Mahmoud M.E. Ahmed 2009 On the hyperchaotic complex Lü system Nonlinear Dyn. 58 725 738 10.1007/s11071-009-9513-0 1183.70053 2563618
-
(2009)
Nonlinear Dyn.
, vol.58
, pp. 725-738
-
-
Mahmoud, G.M.1
Mahmoud, E.E.2
Ahmed, M.E.3
-
37
-
-
67349231435
-
A new hyperchaotic system and its circuit implementation
-
10.1016/j.chaos.2007.10.053
-
G. Qi M.A. Wyk B.J. Wyk G. Chen 2009 A new hyperchaotic system and its circuit implementation Chaos Solitons Fractals 40 2544 2549 10.1016/j.chaos. 2007.10.053
-
(2009)
Chaos Solitons Fractals
, vol.40
, pp. 2544-2549
-
-
Qi, G.1
Wyk, M.A.2
Wyk, B.J.3
Chen, G.4
-
38
-
-
60549101561
-
Hyperchaotic attractors from a linearly controlled Lorenz system
-
10.1016/j.nonrwa.2008.02.008 1175.37041 2502969
-
Q. Yang K. Zhang G. Chen 2009 Hyperchaotic attractors from a linearly controlled Lorenz system Nonlinear Anal.; Real World Appl. 10 1601 1617 10.1016/j.nonrwa.2008.02.008 1175.37041 2502969
-
(2009)
Nonlinear Anal.; Real World Appl.
, vol.10
, pp. 1601-1617
-
-
Yang, Q.1
Zhang, K.2
Chen, G.3
-
40
-
-
33751234196
-
A novel hyperchaos system only with one equilibrium
-
DOI 10.1016/j.physleta.2006.08.085, PII S0375960106013855
-
Z. Chen Y. Yang G. Qi Z. Yuan 2007 A novel hyperchaos system only with one equilibrium Phys. Lett. A 360 696 701 10.1016/j.physleta.2006.08.085 2287760 (Pubitemid 44791796)
-
(2007)
Physics Letters, Section A: General, Atomic and Solid State Physics
, vol.360
, Issue.6
, pp. 696-701
-
-
Chen, Z.1
Yang, Y.2
Qi, G.3
Yuan, Z.4
-
41
-
-
36549084097
-
A new hyperchaotic dynamical system
-
DOI 10.1088/1009-1963/16/11/022
-
C. Liu 2007 A new hyperchaotic dynamical system Chin. Phys. 16 3279 3284 10.1088/1009-1963/16/11/022 (Pubitemid 350176532)
-
(2007)
Chinese Physics
, vol.16
, Issue.11
, pp. 3279-3284
-
-
Liu, C.-X.1
-
42
-
-
77949274584
-
A four-wing hyper-chaotic attractor and transient chaos generated from a new 4-D quadratic autonomous system
-
10.1007/s11071-009-9558-0 1183.70049 2592934
-
S. Cang G. Qi Z. Chen 2010 A four-wing hyper-chaotic attractor and transient chaos generated from a new 4-D quadratic autonomous system Nonlinear Dyn. 59 515 527 10.1007/s11071-009-9558-0 1183.70049 2592934
-
(2010)
Nonlinear Dyn.
, vol.59
, pp. 515-527
-
-
Cang, S.1
Qi, G.2
Chen, Z.3
-
43
-
-
67349103750
-
Multi-wing hyperchaotic attractors from coupled Lorenz systems
-
10.1016/j.chaos.2007.12.003 1198.37045
-
G. Grassi F.L. Severance D.A. Miller 2009 Multi-wing hyperchaotic attractors from coupled Lorenz systems Chaos Solitons Fractals 41 284 291 10.1016/j.chaos.2007.12.003 1198.37045
-
(2009)
Chaos Solitons Fractals
, vol.41
, pp. 284-291
-
-
Grassi, G.1
Severance, F.L.2
Miller, D.A.3
-
45
-
-
0034275979
-
Fractional calculus and continuous-time finance
-
10.1016/S0378-4371(00)00255-7 1773804
-
E. Scalas R. Gorenflo F. Mainardi 2000 Fractional calculus and continuous-time finance Physica A 284 376 384 10.1016/S0378-4371(00)00255-7 1773804
-
(2000)
Physica A
, vol.284
, pp. 376-384
-
-
Scalas, E.1
Gorenflo, R.2
Mainardi, F.3
-
46
-
-
36348976811
-
Past and present - Fractional calculus: A mathematical tool from the past for present engineers
-
DOI 10.1109/MIE.2007.901479
-
Cafagna, D.: Fractional calculus: a mathematical tool from the past for present engineers. IEEE Ind. Electron. Mag. (summer), 35-40 (2007) (Pubitemid 350141726)
-
(2007)
IEEE Industrial Electronics Magazine
, vol.1
, Issue.2
, pp. 35-40
-
-
Cafagna, D.1
-
47
-
-
56749159095
-
Using fractional-order integrator to control chaos in single-input chaotic system
-
10.1007/s11071-008-9353-3 1220.70025 2466113
-
M.S. Tavazoei M. Haeri S. Bolouki M. Siami 2009 Using fractional-order integrator to control chaos in single-input chaotic system Nonlinear Dyn. 55 179 190 10.1007/s11071-008-9353-3 1220.70025 2466113
-
(2009)
Nonlinear Dyn.
, vol.55
, pp. 179-190
-
-
Tavazoei, M.S.1
Haeri, M.2
Bolouki, S.3
Siami, M.4
-
48
-
-
52149110344
-
Bifurcation and chaos in the fractional-order Chen system via a time-domain approach
-
10.1142/S0218127408021415 1158.34300 2454066
-
D. Cafagna G. Grassi 2008 Bifurcation and chaos in the fractional-order Chen system via a time-domain approach Int. J. Bifurc. Chaos 18 1845 1863 10.1142/S0218127408021415 1158.34300 2454066
-
(2008)
Int. J. Bifurc. Chaos
, vol.18
, pp. 1845-1863
-
-
Cafagna, D.1
Grassi, G.2
-
49
-
-
45149102412
-
Fractional-order Chua's circuit: Time-domain analysis, bifurcation, chaotic behavior and test for chaos
-
DOI 10.1142/S0218127408020550, PII S0218127408020550
-
D. Cafagna G. Grassi 2008 Fractional-order Chua's circuit: time domain analysis, bifurcation, chaotic behavior and test for chaos Int. J. Bifurc. Chaos 18 615 639 10.1142/S0218127408020550 1147.34302 2415859 (Pubitemid 351828395)
-
(2008)
International Journal of Bifurcation and Chaos
, vol.18
, Issue.3
, pp. 615-639
-
-
Cafagna, D.1
Grassi, G.2
-
50
-
-
74149087189
-
Chaos in fractional ordered Liu system
-
10.1016/j.camwa.2009.08.018 1189.34081 2579477
-
V. Daftardar-Gejji S. Bhalekar 2010 Chaos in fractional ordered Liu system Comput. Math. Appl. 59 1117 1127 10.1016/j.camwa.2009.08.018 1189.34081 2579477
-
(2010)
Comput. Math. Appl.
, vol.59
, pp. 1117-1127
-
-
Daftardar-Gejji, V.1
Bhalekar, S.2
-
51
-
-
73149090367
-
Fractional-order chaos: A novel four-wing attractor in coupled Lorenz systems
-
10.1142/S0218127409024785 1182.34003
-
D. Cafagna G. Grassi 2009 Fractional-order chaos: a novel four-wing attractor in coupled Lorenz systems Int. J. Bifurc. Chaos 19 3329 3338 10.1142/S0218127409024785 1182.34003
-
(2009)
Int. J. Bifurc. Chaos
, vol.19
, pp. 3329-3338
-
-
Cafagna, D.1
Grassi, G.2
-
52
-
-
65249109832
-
Hyperchaos in the fractional-order Rössler system with lowest order
-
10.1142/S0218127409022890 1170.34327
-
D. Cafagna G. Grassi 2009 Hyperchaos in the fractional-order Rössler system with lowest order Int. J. Bifurc. Chaos 19 339 347 10.1142/ S0218127409022890 1170.34327
-
(2009)
Int. J. Bifurc. Chaos
, vol.19
, pp. 339-347
-
-
Cafagna, D.1
Grassi, G.2
-
53
-
-
0001618393
-
An algorithm for the numerical solution of differential equations of fractional order
-
K. Diethelm 1997 An algorithm for the numerical solution of differential equations of fractional order Electron. Trans. Numer. Anal. 5 1 6 0890.65071 1447831 (Pubitemid 38870919)
-
(1997)
Electronic Transactions on Numerical Analysis
, vol.5
, pp. 1-6
-
-
Diethelm, K.1
-
54
-
-
0036650479
-
A predictor-corrector approach for the numerical solution of fractional differential equations
-
DOI 10.1023/A:1016592219341, Fractional Order Calculus and Its Applications
-
K. Diethelm N.J. Ford A.D. Freed 2002 A predictor-corrector approach for the numerical solution for fractional differential equations Nonlinear Dyn. 29 3 22 10.1023/A:1016592219341 1009.65049 1926466 (Pubitemid 34945390)
-
(2002)
Nonlinear Dynamics
, vol.29
, Issue.1-4
, pp. 3-22
-
-
Diethelm, K.1
Ford, N.J.2
Freed, A.D.3
-
55
-
-
0037081673
-
Analysis of fractional differential equations
-
10.1006/jmaa.2000.7194 1014.34003 1876137
-
K. Diethelm N.J. Ford 2002 Analysis of fractional differential equations J. Math. Anal. Appl. 265 229 248 10.1006/jmaa.2000.7194 1014.34003 1876137
-
(2002)
J. Math. Anal. Appl.
, vol.265
, pp. 229-248
-
-
Diethelm, K.1
Ford, N.J.2
-
56
-
-
0026928376
-
Fractal system as represented by singularity function
-
DOI 10.1109/9.159595
-
A. Charef H.H. Sun Y.Y. Tsao B. Onaral 1992 Fractal systems as represented by singularity function IEEE Trans. Autom. Control 37 1465 1470 10.1109/9.159595 0825.58027 1183117 (Pubitemid 23555835)
-
(1992)
IEEE Transactions on Automatic Control
, vol.37
, Issue.9
, pp. 1465-1470
-
-
Charef, A.1
Sun, H.H.2
Tsao, Y.Y.3
Onaral, B.4
-
57
-
-
44649156296
-
Limitation of frequency domain approximation for detecting chaos in fractional-order system
-
10.1016/j.na.2007.06.030 1148.65094 2426692
-
M.S. Tavazoei M. Haeri 2008 Limitation of frequency domain approximation for detecting chaos in fractional-order system Nonlinear Anal. Theory Methods Appl. 69 1299 1320 10.1016/j.na.2007.06.030 1148.65094 2426692
-
(2008)
Nonlinear Anal. Theory Methods Appl.
, vol.69
, pp. 1299-1320
-
-
Tavazoei, M.S.1
Haeri, M.2
|