메뉴 건너뛰기




Volumn 67, Issue 2, 2012, Pages 1161-1173

Four-wing hyperchaotic attractor generated from a new 4D system with one equilibrium and its fractional-order form

Author keywords

Four wing hyperchaotic attractor; Fractional order system; Lyapunov exponent; Poincar mapping

Indexed keywords

ANALYSIS APPROACH; AUTONOMOUS SYSTEMS; BIFURCATION DIAGRAM; CHAOTIC ATTRACTORS; DYNAMICAL BEHAVIORS; EQUILIBRIUM POINT; FRACTIONAL-ORDER SYSTEMS; HYPERCHAOTIC; LYAPUNOV EXPONENT; PHASE PORTRAIT; POINCARE;

EID: 84855761900     PISSN: 0924090X     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11071-011-0060-0     Document Type: Article
Times cited : (81)

References (57)
  • 1
    • 0000241853 scopus 로고
    • Deterministic nonperiodic flow
    • 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
    • E.N. Lorenz 1963 Deterministic nonperiodic flow J. Atmos. Sci. 20 130 141 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
    • (1963) J. Atmos. Sci. , vol.20 , pp. 130-141
    • Lorenz, E.N.1
  • 2
    • 68649124586 scopus 로고    scopus 로고
    • Generating chaos in injection-synchronized Gunn oscillator: An experimental approach
    • 10.4103/0377-2063.54894
    • J. Chakravorty T. Banerjee R. Ghatak A. Bose B.C. Sarkar 2009 Generating chaos in injection-synchronized Gunn oscillator: an experimental approach IETE J. Res. 55 106 111 10.4103/0377-2063.54894
    • (2009) IETE J. Res. , vol.55 , pp. 106-111
    • Chakravorty, J.1    Banerjee, T.2    Ghatak, R.3    Bose, A.4    Sarkar, B.C.5
  • 3
    • 56049119376 scopus 로고    scopus 로고
    • Chaotic synchronization with experimental application to secure communication
    • B. Nana P. Woafo S. Domngang 2009 Chaotic synchronization with experimental application to secure communication Commun. Nonlinear Sci. Numer. Simul. 14 629 655
    • (2009) Commun. Nonlinear Sci. Numer. Simul. , vol.14 , pp. 629-655
    • Nana, B.1    Woafo, P.2    Domngang, S.3
  • 4
    • 57849118261 scopus 로고    scopus 로고
    • Multi-user receivers for synchronous and asynchronous transmission for chaos-based multiple-access systems
    • 10.1016/j.sigpro.2008.10.015 1157.94326
    • M. Coulon D. Roviras 2009 Multi-user receivers for synchronous and asynchronous transmission for chaos-based multiple-access systems Signal Process. 89 583 598 10.1016/j.sigpro.2008.10.015 1157.94326
    • (2009) Signal Process. , vol.89 , pp. 583-598
    • Coulon, M.1    Roviras, D.2
  • 5
    • 61349120134 scopus 로고    scopus 로고
    • Low-density codes based on chaotic systems for simple encoding
    • 10.1109/TCSI.2008.2008433
    • S. Kozic M. Hasler 2009 Low-density codes based on chaotic systems for simple encoding IEEE Trans. Circuits Syst. I 56 405 415 10.1109/TCSI.2008. 2008433
    • (2009) IEEE Trans. Circuits Syst. i , vol.56 , pp. 405-415
    • Kozic, S.1    Hasler, M.2
  • 9
    • 33846082720 scopus 로고    scopus 로고
    • A new chaotic system and its circuit realization
    • DOI 10.1088/1009-1963/15/12/018, 018
    • G.Y. Wang S.S. Qui H.W. Li C.F. Li Y. Zheng 2006 A new chaotic system and its circuit realization Chin. Phys. 15 2872 2877 10.1088/1009-1963/15/12/018 (Pubitemid 46070072)
    • (2006) Chinese Physics , vol.15 , Issue.12 , pp. 2872-2877
    • Wang, G.-Y.1    Qiu, S.-S.2    Li, H.-W.3    Li, C.-F.4    Zheng, Y.5
  • 10
    • 40549115278 scopus 로고    scopus 로고
    • A new three-dimensional autonomous chaotic oscillation system
    • 10.1088/1742-6596/96/1/012173
    • C. Liu L. Liu 2008 A new three-dimensional autonomous chaotic oscillation system J. Phys. Conf. Ser. 96 012173 10.1088/1742-6596/96/1/012173
    • (2008) J. Phys. Conf. Ser. , vol.96 , pp. 012173
    • Liu, C.1    Liu, L.2
  • 11
    • 45849103151 scopus 로고    scopus 로고
    • A single three-wing or four-wing chaotic attractor generated from a three-dimensional smooth quadratic autonomous system
    • 10.1016/j.chaos.2007.01.058 1152.37312 2435612
    • Z. Chen Y. Yang Z. Yuan 2008 A single three-wing or four-wing chaotic attractor generated from a three-dimensional smooth quadratic autonomous system Chaos Solitons Fractals 38 1187 1196 10.1016/j.chaos.2007.01.058 1152.37312 2435612
    • (2008) Chaos Solitons Fractals , vol.38 , pp. 1187-1196
    • Chen, Z.1    Yang, Y.2    Yuan, Z.3
  • 12
    • 67349148897 scopus 로고    scopus 로고
    • 3-scroll and 4-scroll chaotic attractors generated from a new 3-D quadratic autonomous system
    • 10.1007/s11071-008-9417-4 1204.70021
    • L. Wang 2009 3-scroll and 4-scroll chaotic attractors generated from a new 3-D quadratic autonomous system Nonlinear Dyn. 56 453 462 10.1007/s11071-008-9417-4 1204.70021
    • (2009) Nonlinear Dyn. , vol.56 , pp. 453-462
    • Wang, L.1
  • 13
    • 69549123872 scopus 로고    scopus 로고
    • A novel three-dimensional autonomous chaotic system generating two-, three- and four-scroll attractors
    • 10.1016/j.physleta.2009.07.088 2571878
    • S. Dadras H.R. Momeni 2009 A novel three-dimensional autonomous chaotic system generating two-, three- and four-scroll attractors Phys. Lett. A 373 3637 3642 10.1016/j.physleta.2009.07.088 2571878
    • (2009) Phys. Lett. A , vol.373 , pp. 3637-3642
    • Dadras, S.1    Momeni, H.R.2
  • 14
    • 21344495201 scopus 로고
    • Lorenz attractor: From differential equations with piecewise-linear terms
    • 10.1142/S0218127493000155 0873.34045 1218724
    • E. Baghious P. Jarry 1993 Lorenz attractor: From differential equations with piecewise-linear terms Int. J. Bifurc. Chaos 3 201 210 10.1142/ S0218127493000155 0873.34045 1218724
    • (1993) Int. J. Bifurc. Chaos , vol.3 , pp. 201-210
    • Baghious, E.1    Jarry, P.2
  • 16
    • 0036658347 scopus 로고    scopus 로고
    • Experimental verification of the butterfly attractor in a modified Lorenz system
    • 10.1142/S0218127402005364
    • S. Ozoguz A. Elwakil M. Kennedy 2002 Experimental verification of the butterfly attractor in a modified Lorenz system Int. J. Bifurc. Chaos 12 1627 1632 10.1142/S0218127402005364
    • (2002) Int. J. Bifurc. Chaos , vol.12 , pp. 1627-1632
    • Ozoguz, S.1    Elwakil, A.2    Kennedy, M.3
  • 17
    • 33745299462 scopus 로고    scopus 로고
    • Four-wing attractors: From pseudo to real
    • DOI 10.1142/S0218127406015180, PII S0218127406015180
    • G. Qi G. Chen S. Li Y. Zhang 2006 Four-wing attractors: From pseudo to real Int. J. Bifurc. Chaos 16 859 885 10.1142/S0218127406015180 1111.37025 2234260 (Pubitemid 43936687)
    • (2006) International Journal of Bifurcation and Chaos , vol.16 , Issue.4 , pp. 859-885
    • Qi, G.1    Chen, G.2    Li, S.3    Zhang, Y.4
  • 18
    • 52149102281 scopus 로고    scopus 로고
    • Generation of a four-wing chaotic attractor by two weakly-coupled Lorenz systems
    • 10.1142/S0218127408021580 1156.37006
    • G. Grassi F.L. Severance E.D. Mashev B.J. Bazuin D.A. Miller 2008 Generation of a four-wing chaotic attractor by two weakly-coupled Lorenz systems Int. J. Bifurc. Chaos 18 2089 2094 10.1142/S0218127408021580 1156.37006
    • (2008) Int. J. Bifurc. Chaos , vol.18 , pp. 2089-2094
    • Grassi, G.1    Severance, F.L.2    Mashev, E.D.3    Bazuin, B.J.4    Miller, D.A.5
  • 19
    • 56349150970 scopus 로고    scopus 로고
    • Novel four-wing and eight-wing attractors using coupled chaotic Lorenz systems
    • 10.1088/1674-1056/17/9/017
    • G. Grassi 2008 Novel four-wing and eight-wing attractors using coupled chaotic Lorenz systems Chin. Phys. B 17 3247 3251 10.1088/1674-1056/17/9/017
    • (2008) Chin. Phys. B , vol.17 , pp. 3247-3251
    • Grassi, G.1
  • 20
    • 78049530202 scopus 로고    scopus 로고
    • Analysis of a new 3D smooth autonomous system with different wing chaotic attractors and transient chaos
    • 10.1007/s11071-010-9726-2 05841014 2737002
    • S. Dadras H.R. Momeni G. Qi 2010 Analysis of a new 3D smooth autonomous system with different wing chaotic attractors and transient chaos Nonlinear Dyn. 62 391 405 10.1007/s11071-010-9726-2 05841014 2737002
    • (2010) Nonlinear Dyn. , vol.62 , pp. 391-405
    • Dadras, S.1    Momeni, H.R.2    Qi, G.3
  • 21
    • 63849188557 scopus 로고    scopus 로고
    • Yet another 3D quadratic autonomous system generating three-wing and four-wing chaotic attractors
    • 10.1063/1.3070648 2513755
    • L. Wang 2009 Yet another 3D quadratic autonomous system generating three-wing and four-wing chaotic attractors Chaos 19 013107 10.1063/1.3070648 2513755
    • (2009) Chaos , vol.19 , pp. 013107
    • Wang, L.1
  • 22
    • 77953558703 scopus 로고    scopus 로고
    • Generating one-, two-, three- and four-scroll attractors from a novel four-dimensional smooth autonomous chaotic system
    • 10.1088/1674-1056/19/6/060506
    • S. Dadras H.R. Momeni 2010 Generating one-, two-, three- and four-scroll attractors from a novel four-dimensional smooth autonomous chaotic system Chin. Phys. B 19 060506 10.1088/1674-1056/19/6/060506
    • (2010) Chin. Phys. B , vol.19 , pp. 060506
    • Dadras, S.1    Momeni, H.R.2
  • 23
    • 0000548789 scopus 로고
    • An equation for hyperchaos
    • 10.1016/0375-9601(79)90150-6 0996.37502 588951
    • O.E. Rössler 1979 An equation for hyperchaos Phys. Lett. A 71 155 157 10.1016/0375-9601(79)90150-6 0996.37502 588951
    • (1979) Phys. Lett. A , vol.71 , pp. 155-157
    • Rössler, O.E.1
  • 27
    • 33746628202 scopus 로고    scopus 로고
    • The generation of a hyperchaotic system based on a three-dimensional autonomous chaotic system
    • DOI 10.1088/1009-1963/15/6/015, 015
    • J.Z. Wang Z.Q. Chen Z.Z. Yuan 2006 The generation of a hyperchaotic system based on a three-dimensional autonomous chaotic system Chin. Phys. 15 1216 1225 10.1088/1009-1963/15/6/015 (Pubitemid 44149728)
    • (2006) Chinese Physics , vol.15 , Issue.6 , pp. 1216-1225
    • Wang, J.-Z.1    Chen, Z.-Q.2    Yuan, Z.-Z.3
  • 28
    • 36049050035 scopus 로고    scopus 로고
    • Generation and suppression of a new hyperchaotic system with double hyperchaotic attractors
    • 10.1016/j.physleta.2007.06.038 1209.37033 2412425
    • Q. Jia 2007 Generation and suppression of a new hyperchaotic system with double hyperchaotic attractors Phys. Lett. A 371 410 415 10.1016/j.physleta. 2007.06.038 1209.37033 2412425
    • (2007) Phys. Lett. A , vol.371 , pp. 410-415
    • Jia, Q.1
  • 29
    • 34248386538 scopus 로고    scopus 로고
    • Hyperchaos generated from the Lorenz chaotic system and its control
    • 10.1016/j.physleta.2007.02.024 1203.93086
    • Q. Jia 2007 Hyperchaos generated from the Lorenz chaotic system and its control Phys. Lett. A 366 217 222 10.1016/j.physleta.2007.02.024 1203.93086
    • (2007) Phys. Lett. A , vol.366 , pp. 217-222
    • Jia, Q.1
  • 30
    • 36849001219 scopus 로고    scopus 로고
    • On a new hyperchaotic system
    • 10.1016/j.physleta.2007.10.082 1217.37032 2374285
    • G. Qi M.A. Wyk B.J. Wyk G. Chen 2008 On a new hyperchaotic system Phys. Lett. A 372 124 136 10.1016/j.physleta.2007.10.082 1217.37032 2374285
    • (2008) Phys. Lett. A , vol.372 , pp. 124-136
    • Qi, G.1    Wyk, M.A.2    Wyk, B.J.3    Chen, G.4
  • 31
    • 49749102772 scopus 로고    scopus 로고
    • Analysis of a novel four-dimensional hyperchaotic system
    • L. Liu C. Liu Y. Zhang 2008 Analysis of a novel four-dimensional hyperchaotic system Chin. J. Phys. 46 386 393
    • (2008) Chin. J. Phys. , vol.46 , pp. 386-393
    • Liu, L.1    Liu, C.2    Zhang, Y.3
  • 32
    • 49749119115 scopus 로고    scopus 로고
    • Local bifurcation analysis of a four-dimensional hyperchaotic system
    • 10.1088/1674-1056/17/7/015
    • W.J. Wu Z.Q. Chan Z.Z. Yuan 2008 Local bifurcation analysis of a four-dimensional hyperchaotic system Chin. Phys. B 17 2420 2432 10.1088/1674-1056/17/7/015
    • (2008) Chin. Phys. B , vol.17 , pp. 2420-2432
    • Wu, W.J.1    Chan, Z.Q.2    Yuan, Z.Z.3
  • 33
    • 43049141911 scopus 로고    scopus 로고
    • Chaotic and hyperchaotic attractors of a complex nonlinear system
    • 10.1088/1751-8113/41/5/055104 2433424
    • G.M. Mahmoud M.A. Al-Kashif A.A. Farghaly 2008 Chaotic and hyperchaotic attractors of a complex nonlinear system J. Phys. A, Math. Theor. 41 055104 10.1088/1751-8113/41/5/055104 2433424
    • (2008) J. Phys. A, Math. Theor. , vol.41 , pp. 055104
    • Mahmoud, G.M.1    Al-Kashif, M.A.2    Farghaly, A.A.3
  • 35
    • 71649097405 scopus 로고    scopus 로고
    • A new hyperchaotic system and its synchronization
    • 10.1016/j.amc.2009.09.060 1188.34051 2576807
    • S. Zheng G. Dong Q. Bi 2010 A new hyperchaotic system and its synchronization Appl. Math. Comput. 215 3192 3200 10.1016/j.amc.2009.09.060 1188.34051 2576807
    • (2010) Appl. Math. Comput. , vol.215 , pp. 3192-3200
    • Zheng, S.1    Dong, G.2    Bi, Q.3
  • 36
    • 70450280831 scopus 로고    scopus 로고
    • On the hyperchaotic complex Lü system
    • 10.1007/s11071-009-9513-0 1183.70053 2563618
    • G.M. Mahmoud E.E. Mahmoud M.E. Ahmed 2009 On the hyperchaotic complex Lü system Nonlinear Dyn. 58 725 738 10.1007/s11071-009-9513-0 1183.70053 2563618
    • (2009) Nonlinear Dyn. , vol.58 , pp. 725-738
    • Mahmoud, G.M.1    Mahmoud, E.E.2    Ahmed, M.E.3
  • 37
    • 67349231435 scopus 로고    scopus 로고
    • A new hyperchaotic system and its circuit implementation
    • 10.1016/j.chaos.2007.10.053
    • G. Qi M.A. Wyk B.J. Wyk G. Chen 2009 A new hyperchaotic system and its circuit implementation Chaos Solitons Fractals 40 2544 2549 10.1016/j.chaos. 2007.10.053
    • (2009) Chaos Solitons Fractals , vol.40 , pp. 2544-2549
    • Qi, G.1    Wyk, M.A.2    Wyk, B.J.3    Chen, G.4
  • 38
    • 60549101561 scopus 로고    scopus 로고
    • Hyperchaotic attractors from a linearly controlled Lorenz system
    • 10.1016/j.nonrwa.2008.02.008 1175.37041 2502969
    • Q. Yang K. Zhang G. Chen 2009 Hyperchaotic attractors from a linearly controlled Lorenz system Nonlinear Anal.; Real World Appl. 10 1601 1617 10.1016/j.nonrwa.2008.02.008 1175.37041 2502969
    • (2009) Nonlinear Anal.; Real World Appl. , vol.10 , pp. 1601-1617
    • Yang, Q.1    Zhang, K.2    Chen, G.3
  • 41
    • 36549084097 scopus 로고    scopus 로고
    • A new hyperchaotic dynamical system
    • DOI 10.1088/1009-1963/16/11/022
    • C. Liu 2007 A new hyperchaotic dynamical system Chin. Phys. 16 3279 3284 10.1088/1009-1963/16/11/022 (Pubitemid 350176532)
    • (2007) Chinese Physics , vol.16 , Issue.11 , pp. 3279-3284
    • Liu, C.-X.1
  • 42
    • 77949274584 scopus 로고    scopus 로고
    • A four-wing hyper-chaotic attractor and transient chaos generated from a new 4-D quadratic autonomous system
    • 10.1007/s11071-009-9558-0 1183.70049 2592934
    • S. Cang G. Qi Z. Chen 2010 A four-wing hyper-chaotic attractor and transient chaos generated from a new 4-D quadratic autonomous system Nonlinear Dyn. 59 515 527 10.1007/s11071-009-9558-0 1183.70049 2592934
    • (2010) Nonlinear Dyn. , vol.59 , pp. 515-527
    • Cang, S.1    Qi, G.2    Chen, Z.3
  • 43
    • 67349103750 scopus 로고    scopus 로고
    • Multi-wing hyperchaotic attractors from coupled Lorenz systems
    • 10.1016/j.chaos.2007.12.003 1198.37045
    • G. Grassi F.L. Severance D.A. Miller 2009 Multi-wing hyperchaotic attractors from coupled Lorenz systems Chaos Solitons Fractals 41 284 291 10.1016/j.chaos.2007.12.003 1198.37045
    • (2009) Chaos Solitons Fractals , vol.41 , pp. 284-291
    • Grassi, G.1    Severance, F.L.2    Miller, D.A.3
  • 45
    • 0034275979 scopus 로고    scopus 로고
    • Fractional calculus and continuous-time finance
    • 10.1016/S0378-4371(00)00255-7 1773804
    • E. Scalas R. Gorenflo F. Mainardi 2000 Fractional calculus and continuous-time finance Physica A 284 376 384 10.1016/S0378-4371(00)00255-7 1773804
    • (2000) Physica A , vol.284 , pp. 376-384
    • Scalas, E.1    Gorenflo, R.2    Mainardi, F.3
  • 46
    • 36348976811 scopus 로고    scopus 로고
    • Past and present - Fractional calculus: A mathematical tool from the past for present engineers
    • DOI 10.1109/MIE.2007.901479
    • Cafagna, D.: Fractional calculus: a mathematical tool from the past for present engineers. IEEE Ind. Electron. Mag. (summer), 35-40 (2007) (Pubitemid 350141726)
    • (2007) IEEE Industrial Electronics Magazine , vol.1 , Issue.2 , pp. 35-40
    • Cafagna, D.1
  • 47
    • 56749159095 scopus 로고    scopus 로고
    • Using fractional-order integrator to control chaos in single-input chaotic system
    • 10.1007/s11071-008-9353-3 1220.70025 2466113
    • M.S. Tavazoei M. Haeri S. Bolouki M. Siami 2009 Using fractional-order integrator to control chaos in single-input chaotic system Nonlinear Dyn. 55 179 190 10.1007/s11071-008-9353-3 1220.70025 2466113
    • (2009) Nonlinear Dyn. , vol.55 , pp. 179-190
    • Tavazoei, M.S.1    Haeri, M.2    Bolouki, S.3    Siami, M.4
  • 48
    • 52149110344 scopus 로고    scopus 로고
    • Bifurcation and chaos in the fractional-order Chen system via a time-domain approach
    • 10.1142/S0218127408021415 1158.34300 2454066
    • D. Cafagna G. Grassi 2008 Bifurcation and chaos in the fractional-order Chen system via a time-domain approach Int. J. Bifurc. Chaos 18 1845 1863 10.1142/S0218127408021415 1158.34300 2454066
    • (2008) Int. J. Bifurc. Chaos , vol.18 , pp. 1845-1863
    • Cafagna, D.1    Grassi, G.2
  • 49
    • 45149102412 scopus 로고    scopus 로고
    • Fractional-order Chua's circuit: Time-domain analysis, bifurcation, chaotic behavior and test for chaos
    • DOI 10.1142/S0218127408020550, PII S0218127408020550
    • D. Cafagna G. Grassi 2008 Fractional-order Chua's circuit: time domain analysis, bifurcation, chaotic behavior and test for chaos Int. J. Bifurc. Chaos 18 615 639 10.1142/S0218127408020550 1147.34302 2415859 (Pubitemid 351828395)
    • (2008) International Journal of Bifurcation and Chaos , vol.18 , Issue.3 , pp. 615-639
    • Cafagna, D.1    Grassi, G.2
  • 50
    • 74149087189 scopus 로고    scopus 로고
    • Chaos in fractional ordered Liu system
    • 10.1016/j.camwa.2009.08.018 1189.34081 2579477
    • V. Daftardar-Gejji S. Bhalekar 2010 Chaos in fractional ordered Liu system Comput. Math. Appl. 59 1117 1127 10.1016/j.camwa.2009.08.018 1189.34081 2579477
    • (2010) Comput. Math. Appl. , vol.59 , pp. 1117-1127
    • Daftardar-Gejji, V.1    Bhalekar, S.2
  • 51
    • 73149090367 scopus 로고    scopus 로고
    • Fractional-order chaos: A novel four-wing attractor in coupled Lorenz systems
    • 10.1142/S0218127409024785 1182.34003
    • D. Cafagna G. Grassi 2009 Fractional-order chaos: a novel four-wing attractor in coupled Lorenz systems Int. J. Bifurc. Chaos 19 3329 3338 10.1142/S0218127409024785 1182.34003
    • (2009) Int. J. Bifurc. Chaos , vol.19 , pp. 3329-3338
    • Cafagna, D.1    Grassi, G.2
  • 52
    • 65249109832 scopus 로고    scopus 로고
    • Hyperchaos in the fractional-order Rössler system with lowest order
    • 10.1142/S0218127409022890 1170.34327
    • D. Cafagna G. Grassi 2009 Hyperchaos in the fractional-order Rössler system with lowest order Int. J. Bifurc. Chaos 19 339 347 10.1142/ S0218127409022890 1170.34327
    • (2009) Int. J. Bifurc. Chaos , vol.19 , pp. 339-347
    • Cafagna, D.1    Grassi, G.2
  • 53
    • 0001618393 scopus 로고    scopus 로고
    • An algorithm for the numerical solution of differential equations of fractional order
    • K. Diethelm 1997 An algorithm for the numerical solution of differential equations of fractional order Electron. Trans. Numer. Anal. 5 1 6 0890.65071 1447831 (Pubitemid 38870919)
    • (1997) Electronic Transactions on Numerical Analysis , vol.5 , pp. 1-6
    • Diethelm, K.1
  • 54
    • 0036650479 scopus 로고    scopus 로고
    • A predictor-corrector approach for the numerical solution of fractional differential equations
    • DOI 10.1023/A:1016592219341, Fractional Order Calculus and Its Applications
    • K. Diethelm N.J. Ford A.D. Freed 2002 A predictor-corrector approach for the numerical solution for fractional differential equations Nonlinear Dyn. 29 3 22 10.1023/A:1016592219341 1009.65049 1926466 (Pubitemid 34945390)
    • (2002) Nonlinear Dynamics , vol.29 , Issue.1-4 , pp. 3-22
    • Diethelm, K.1    Ford, N.J.2    Freed, A.D.3
  • 55
    • 0037081673 scopus 로고    scopus 로고
    • Analysis of fractional differential equations
    • 10.1006/jmaa.2000.7194 1014.34003 1876137
    • K. Diethelm N.J. Ford 2002 Analysis of fractional differential equations J. Math. Anal. Appl. 265 229 248 10.1006/jmaa.2000.7194 1014.34003 1876137
    • (2002) J. Math. Anal. Appl. , vol.265 , pp. 229-248
    • Diethelm, K.1    Ford, N.J.2
  • 56
    • 0026928376 scopus 로고
    • Fractal system as represented by singularity function
    • DOI 10.1109/9.159595
    • A. Charef H.H. Sun Y.Y. Tsao B. Onaral 1992 Fractal systems as represented by singularity function IEEE Trans. Autom. Control 37 1465 1470 10.1109/9.159595 0825.58027 1183117 (Pubitemid 23555835)
    • (1992) IEEE Transactions on Automatic Control , vol.37 , Issue.9 , pp. 1465-1470
    • Charef, A.1    Sun, H.H.2    Tsao, Y.Y.3    Onaral, B.4
  • 57
    • 44649156296 scopus 로고    scopus 로고
    • Limitation of frequency domain approximation for detecting chaos in fractional-order system
    • 10.1016/j.na.2007.06.030 1148.65094 2426692
    • M.S. Tavazoei M. Haeri 2008 Limitation of frequency domain approximation for detecting chaos in fractional-order system Nonlinear Anal. Theory Methods Appl. 69 1299 1320 10.1016/j.na.2007.06.030 1148.65094 2426692
    • (2008) Nonlinear Anal. Theory Methods Appl. , vol.69 , pp. 1299-1320
    • Tavazoei, M.S.1    Haeri, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.