-
2
-
-
0030570061
-
VARMAX-modelling of balst furnace process variables
-
R. Östermark, H. Saxén, VARMAX-modelling of balst furnace process variables, European Journal of Operational Research, 90 (10), 1996, 85-101.
-
(1996)
European Journal of Operational Research
, vol.90
, Issue.10
, pp. 85-101
-
-
Östermark, R.1
Saxén, H.2
-
3
-
-
18344376966
-
Chaotic local-region linear prediction of silicon content in hot metal of blast furnace
-
C. H. Gao, Z. M. Zhou, Z. J. Shao, Chaotic local-region linear prediction of silicon content in hot metal of blast furnace, Acta Metallurgica Sinica, 4 (4), 2005, 433-436.
-
(2005)
Acta Metallurgica Sinica
, vol.4
, Issue.4
, pp. 433-436
-
-
Gao, C.H.1
Zhou, Z.M.2
Shao, Z.J.3
-
4
-
-
33846163496
-
Measurement of time-dependent fractal dimension for time series of silicon content in pig iron
-
Z. M. Zhou, Measurement of time-dependent fractal dimension for time series of silicon content in pig iron, Physica A, 376, 2007, 133-138.
-
(2007)
Physica A
, vol.376
, pp. 133-138
-
-
Zhou, Z.M.1
-
5
-
-
78649440595
-
Multiscale dynamic analysis of blast furnacesystem based on intensive signal processing
-
033102
-
Y. Chu, C. Gao, X. Liu, Multiscale dynamic analysis of blast furnacesystem based on intensive signal processing, Chaos, 20, 2010, 033102.
-
(2010)
Chaos
, vol.20
-
-
Chu, Y.1
Gao, C.2
Liu, X.3
-
6
-
-
77956768550
-
Recent progress and future perspective on mathematical modeling of blast furnace
-
S. Ueda, S. Natsui, H. Nogami, J. Yagi, T. Ariyama, Recent progress and future perspective on mathematical modeling of blast furnace, ISIJ International, 50 (7), 2010, 914-923.
-
(2010)
ISIJ International
, vol.50
, Issue.7
, pp. 914-923
-
-
Ueda, S.1
Natsui, S.2
Nogami, H.3
Yagi, J.4
Ariyama, T.5
-
7
-
-
59649118425
-
Application of least squares support vector machines to predict the silicon content in blast furnace hot metal
-
L. Jian, C. H. Gao, L. Li, J. S. Zeng, Application of least squares support vector machines to predict the silicon content in blast furnace hot metal, ISIJ International, 48 (11), 2008, 1659-1661.
-
(2008)
ISIJ International
, vol.48
, Issue.11
, pp. 1659-1661
-
-
Jian, L.1
Gao, C.H.2
Li, L.3
Zeng, J.S.4
-
8
-
-
2442435706
-
Blast furnace hot metal temperature prediction through neural networks-based models
-
J. Jimenez, J. Mochon, Jesus Sainz de Ayala, F. Obeso, Blast furnace hot metal temperature prediction through neural networks-based models, ISIJ International, 44 (3), 2004, 573-580.
-
(2004)
ISIJ International
, vol.44
, Issue.3
, pp. 573-580
-
-
Jimenez, J.1
Mochon, J.2
de Ayala, J.S.3
Obeso, F.4
-
9
-
-
33244454512
-
Prediction of Silicon content in Blast Furnace hot metal using partial least Square
-
T. Bhattacharya, Prediction of Silicon content in Blast Furnace hot metal using partial least Square, ISIJ International, 45 (12), 2005, 1943-1945.
-
(2005)
ISIJ International
, vol.45
, Issue.12
, pp. 1943-1945
-
-
Bhattacharya, T.1
-
10
-
-
39149117356
-
Nonlinear prediction of the hot metal silicon content in the blast furnace
-
H. Saxen, F. Pettersson, Nonlinear prediction of the hot metal silicon content in the blast furnace, ISIJ International, 47 (12), 2007, 1732-1737.
-
(2007)
ISIJ International
, vol.47
, Issue.12
, pp. 1732-1737
-
-
Saxen, H.1
Pettersson, F.2
-
11
-
-
0037771172
-
A chaos genetic algorithm for optimizing an artificial neural network of predicting silicon content in hot metal
-
D. L. Zheng, R. X. Liang, Y. Zhou, Y. Wang, A chaos genetic algorithm for optimizing an artificial neural network of predicting silicon content in hot metal, Journal of University of Science and Technology Beijing, 10 (3), 2003, 68-71.
-
(2003)
Journal of University of Science and Technology Beijing
, vol.10
, Issue.3
, pp. 68-71
-
-
Zheng, D.L.1
Liang, R.X.2
Zhou, Y.3
Wang, Y.4
-
12
-
-
33645471785
-
Feature subset selection and feature ranking for multivariate time series
-
H. Yoon, K. Yang, C. Shahabi, Feature subset selection and feature ranking for multivariate time series, IEEE Trans. On Knowledge and Data Engineering, 17 (9), 2005, 1186-1198.
-
(2005)
IEEE Trans. On Knowledge and Data Engineering
, vol.17
, Issue.9
, pp. 1186-1198
-
-
Yoon, H.1
Yang, K.2
Shahabi, C.3
-
13
-
-
33745561205
-
An introduction to variable and feature selection
-
I. Guyon, A. Elisseeff, An introduction to variable and feature selection, Journal of Machine Learning Research, 3, 2003, 1157-1182.
-
(2003)
Journal of Machine Learning Research
, vol.3
, pp. 1157-1182
-
-
Guyon, I.1
Elisseeff, A.2
-
14
-
-
80052797361
-
Improved mutual information-based gene selection with fuzzy rough sets
-
F. F. Xu, J. S. Lei, L. Wei, Improved Mutual Information-based Gene Selection with Fuzzy Rough Sets, Journal of Computational Information Systems, 7 (9), 2011, 3166-3173.
-
(2011)
Journal of Computational Information Systems
, vol.7
, Issue.9
, pp. 3166-3173
-
-
Xu, F.F.1
Lei, J.S.2
Wei, L.3
-
15
-
-
77950348287
-
Evaluation of mutual information estimators for time series
-
A. Papana, D. Kugiumtzis, Evaluation of mutual information estimators for time series, International Journal of Bifurcation and Chaos, Applied Sciences and Engineering, 2009, 2-6.
-
(2009)
International Journal of Bifurcation and Chaos, Applied Sciences and Engineering
, pp. 2-6
-
-
Papana, A.1
Kugiumtzis, D.2
-
17
-
-
24344458137
-
Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy
-
H. Peng, F. Long, C. Ding, Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy, IEEE Transactions on Patter Analysis and Machine Intelligence, 27 (8), 2005, 1226-238.
-
(2005)
IEEE Transactions on Patter Analysis and Machine Intelligence
, vol.27
, Issue.8
, pp. 1226-238
-
-
Peng, H.1
Long, F.2
Ding, C.3
-
18
-
-
39749164774
-
Estimating mutual information
-
066138
-
A. Kraskov, H. Stogbauer, P. Grassberger, Estimating mutual information, Physical Review E, 69, 2004, 066138.
-
(2004)
Physical Review E
, vol.69
-
-
Kraskov, A.1
Stogbauer, H.2
Grassberger, P.3
|