메뉴 건너뛰기




Volumn 8, Issue 16, 2011, Pages 4275-4283

Prediction of silicon content in hot metal based on SVM and mutual information for feature selection

Author keywords

Mutual information; Silicon content in hot metal; Support vector machine

Indexed keywords

HIT RATE; INPUT VARIABLES; MULTIVARIATE TIME SERIES; MUTUAL INFORMATIONS; ONLINE PREDICTION; OUTPUT VARIABLES; PREDICTION MODEL; SILICON CONTENT IN HOT METAL; SUPPORT VECTOR; SVM MODEL; TEST SETS;

EID: 84855426615     PISSN: 15487741     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (6)

References (19)
  • 3
    • 18344376966 scopus 로고    scopus 로고
    • Chaotic local-region linear prediction of silicon content in hot metal of blast furnace
    • C. H. Gao, Z. M. Zhou, Z. J. Shao, Chaotic local-region linear prediction of silicon content in hot metal of blast furnace, Acta Metallurgica Sinica, 4 (4), 2005, 433-436.
    • (2005) Acta Metallurgica Sinica , vol.4 , Issue.4 , pp. 433-436
    • Gao, C.H.1    Zhou, Z.M.2    Shao, Z.J.3
  • 4
    • 33846163496 scopus 로고    scopus 로고
    • Measurement of time-dependent fractal dimension for time series of silicon content in pig iron
    • Z. M. Zhou, Measurement of time-dependent fractal dimension for time series of silicon content in pig iron, Physica A, 376, 2007, 133-138.
    • (2007) Physica A , vol.376 , pp. 133-138
    • Zhou, Z.M.1
  • 5
    • 78649440595 scopus 로고    scopus 로고
    • Multiscale dynamic analysis of blast furnacesystem based on intensive signal processing
    • 033102
    • Y. Chu, C. Gao, X. Liu, Multiscale dynamic analysis of blast furnacesystem based on intensive signal processing, Chaos, 20, 2010, 033102.
    • (2010) Chaos , vol.20
    • Chu, Y.1    Gao, C.2    Liu, X.3
  • 6
    • 77956768550 scopus 로고    scopus 로고
    • Recent progress and future perspective on mathematical modeling of blast furnace
    • S. Ueda, S. Natsui, H. Nogami, J. Yagi, T. Ariyama, Recent progress and future perspective on mathematical modeling of blast furnace, ISIJ International, 50 (7), 2010, 914-923.
    • (2010) ISIJ International , vol.50 , Issue.7 , pp. 914-923
    • Ueda, S.1    Natsui, S.2    Nogami, H.3    Yagi, J.4    Ariyama, T.5
  • 7
    • 59649118425 scopus 로고    scopus 로고
    • Application of least squares support vector machines to predict the silicon content in blast furnace hot metal
    • L. Jian, C. H. Gao, L. Li, J. S. Zeng, Application of least squares support vector machines to predict the silicon content in blast furnace hot metal, ISIJ International, 48 (11), 2008, 1659-1661.
    • (2008) ISIJ International , vol.48 , Issue.11 , pp. 1659-1661
    • Jian, L.1    Gao, C.H.2    Li, L.3    Zeng, J.S.4
  • 8
    • 2442435706 scopus 로고    scopus 로고
    • Blast furnace hot metal temperature prediction through neural networks-based models
    • J. Jimenez, J. Mochon, Jesus Sainz de Ayala, F. Obeso, Blast furnace hot metal temperature prediction through neural networks-based models, ISIJ International, 44 (3), 2004, 573-580.
    • (2004) ISIJ International , vol.44 , Issue.3 , pp. 573-580
    • Jimenez, J.1    Mochon, J.2    de Ayala, J.S.3    Obeso, F.4
  • 9
    • 33244454512 scopus 로고    scopus 로고
    • Prediction of Silicon content in Blast Furnace hot metal using partial least Square
    • T. Bhattacharya, Prediction of Silicon content in Blast Furnace hot metal using partial least Square, ISIJ International, 45 (12), 2005, 1943-1945.
    • (2005) ISIJ International , vol.45 , Issue.12 , pp. 1943-1945
    • Bhattacharya, T.1
  • 10
    • 39149117356 scopus 로고    scopus 로고
    • Nonlinear prediction of the hot metal silicon content in the blast furnace
    • H. Saxen, F. Pettersson, Nonlinear prediction of the hot metal silicon content in the blast furnace, ISIJ International, 47 (12), 2007, 1732-1737.
    • (2007) ISIJ International , vol.47 , Issue.12 , pp. 1732-1737
    • Saxen, H.1    Pettersson, F.2
  • 11
    • 0037771172 scopus 로고    scopus 로고
    • A chaos genetic algorithm for optimizing an artificial neural network of predicting silicon content in hot metal
    • D. L. Zheng, R. X. Liang, Y. Zhou, Y. Wang, A chaos genetic algorithm for optimizing an artificial neural network of predicting silicon content in hot metal, Journal of University of Science and Technology Beijing, 10 (3), 2003, 68-71.
    • (2003) Journal of University of Science and Technology Beijing , vol.10 , Issue.3 , pp. 68-71
    • Zheng, D.L.1    Liang, R.X.2    Zhou, Y.3    Wang, Y.4
  • 12
    • 33645471785 scopus 로고    scopus 로고
    • Feature subset selection and feature ranking for multivariate time series
    • H. Yoon, K. Yang, C. Shahabi, Feature subset selection and feature ranking for multivariate time series, IEEE Trans. On Knowledge and Data Engineering, 17 (9), 2005, 1186-1198.
    • (2005) IEEE Trans. On Knowledge and Data Engineering , vol.17 , Issue.9 , pp. 1186-1198
    • Yoon, H.1    Yang, K.2    Shahabi, C.3
  • 14
    • 80052797361 scopus 로고    scopus 로고
    • Improved mutual information-based gene selection with fuzzy rough sets
    • F. F. Xu, J. S. Lei, L. Wei, Improved Mutual Information-based Gene Selection with Fuzzy Rough Sets, Journal of Computational Information Systems, 7 (9), 2011, 3166-3173.
    • (2011) Journal of Computational Information Systems , vol.7 , Issue.9 , pp. 3166-3173
    • Xu, F.F.1    Lei, J.S.2    Wei, L.3
  • 17
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy
    • H. Peng, F. Long, C. Ding, Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy, IEEE Transactions on Patter Analysis and Machine Intelligence, 27 (8), 2005, 1226-238.
    • (2005) IEEE Transactions on Patter Analysis and Machine Intelligence , vol.27 , Issue.8 , pp. 1226-238
    • Peng, H.1    Long, F.2    Ding, C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.