메뉴 건너뛰기




Volumn 65, Issue 4, 2011, Pages 457-466

Chaos and mixed synchronization of a new fractional-order system with one saddle and two stable node-foci

Author keywords

Chaos; Fractional order system; Lorenz like system; Minimum effective; Mixed synchronization

Indexed keywords

CHAOTIC ATTRACTORS; EFFECTIVE DIMENSIONS; FRACTIONAL DERIVATIVES; FRACTIONAL-ORDER SYSTEMS; INTERACTIVE SYSTEM; LINEAR DIFFERENTIAL EQUATION; LOCAL STABILITY; LORENZ-LIKE SYSTEM; MINIMUM EFFECTIVE; STATE VARIABLES; SUFFICIENT CONDITIONS; THEORETICAL RESULT;

EID: 84855372304     PISSN: 0924090X     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11071-010-9904-2     Document Type: Article
Times cited : (61)

References (40)
  • 6
    • 0041384356 scopus 로고    scopus 로고
    • Chaos dynamics of fractional lorenz system
    • Grigorenko, I., Grigorenko, E.: Chaos dynamics of fractional Lorenz system. Phys. Rev. Lett. 91, 034101 (2003)
    • (2003) Phys. Rev. Lett. , vol.91 , pp. 034101
    • Grigorenko, I.1    Grigorenko, E.2
  • 7
    • 0037332868 scopus 로고    scopus 로고
    • Chaos in fractional-order autonomous nonlinear systems
    • Ahmad, W.M., Sprott, J.C.: Chaos in fractional-order autonomous nonlinear systems. Chaos Solitons Fractals 16, 339-349 (2003)
    • (2003) Chaos Solitons Fractals , vol.16 , pp. 339-349
    • Ahmad, W.M.1    Sprott, J.C.2
  • 8
    • 2042470796 scopus 로고    scopus 로고
    • Chaos in the fractional order chen system and its control
    • Li, C.P., Chen, G.R.: Chaos in the fractional order Chen system and its control. Chaos Solitons Fractals 22, 549-554 (2004)
    • (2004) Chaos Solitons Fractals , vol.22 , pp. 549-554
    • Li, C.P.1    Chen, G.R.2
  • 9
    • 68249152474 scopus 로고    scopus 로고
    • Describing function based methods for predicting chaos in a class of fractional order differential equations
    • Tavazoei,M.S., Haeri, M.: Describing function based methods for predicting chaos in a class of fractional order differential equations. Nonlinear Dyn. 57, 363-373 (2009)
    • (2009) Nonlinear Dyn. , vol.57 , pp. 363-373
    • Tavazoei, M.S.1    Haeri, M.2
  • 10
    • 67449110445 scopus 로고    scopus 로고
    • Chaos in the fractional-order volta's system: Modeling and simulation
    • Petráš, I.: Chaos in the fractional-order Volta's system: Modeling and simulation. Nonlinear Dyn. 57, 157-170 (2009)
    • (2009) Nonlinear Dyn. , vol.57 , pp. 157-170
    • Petráš, I.1
  • 11
    • 77952741594 scopus 로고    scopus 로고
    • Chaos in fractional conjugate lorenz system and its scaling attractors
    • Yang, Q.G., Zeng, C.B.: Chaos in fractional conjugate Lorenz system and its scaling attractors. Commun. Nonlinear Sci. Numer. Simulat. 15, 4041-4051 (2010)
    • (2010) Commun. Nonlinear Sci. Numer. Simulat. , vol.15 , pp. 4041-4051
    • Yang, Q.G.1    Zeng, C.B.2
  • 12
    • 77955624215 scopus 로고    scopus 로고
    • Chaotic behavior of a class of discontinuous dynamical systems of fractional-order
    • Danca, M.: Chaotic behavior of a class of discontinuous dynamical systems of fractional-order. Nonlinear Dyn. 60, 525-534 (2010)
    • (2010) Nonlinear Dyn. , vol.60 , Issue.525-534
    • Danca, M.1
  • 13
    • 3342927052 scopus 로고    scopus 로고
    • Chaos and hyperchaos in the fractional-order rössler equations
    • Li, C.G., Chen, G.R.: Chaos and hyperchaos in the fractional-order Rössler equations. Physica A 341, 55-61 (2004)
    • (2004) Physica A , vol.341 , pp. 55-61
    • Li, C.G.1    Chen, G.R.2
  • 14
    • 67349108727 scopus 로고    scopus 로고
    • Stability conditions, hyperchaos and control in a novel fractional order hyperchaotic system
    • Maouk, A.E.: Stability conditions, hyperchaos and control in a novel fractional order hyperchaotic system. Phys. Lett. A 373, 2166-2173 (2009)
    • (2009) Phys. Lett. , vol.A 373 , pp. 2166-2173
    • Maouk, A.E.1
  • 16
    • 0002731965 scopus 로고    scopus 로고
    • Stability results for fractional differential equations with applications to control processing. In: Computational engineering in systems and application multiconference, lille, france, imacs
    • Matignon, D.: Stability results for fractional differential equations with applications to control processing. In: Computational Engineering in Systems and Application Multiconference, Lille, France, IMACS, IEEE-SMC, vol. 2, pp. 963-968 (1996)
    • (1996) IEEE-SMC , vol.2 , pp. 963-968
    • Matignon, D.1
  • 17
    • 0037081673 scopus 로고    scopus 로고
    • Analysis of fractional differential equations
    • Diethelm, K., Ford, N.J.: Analysis of fractional differential equations. J. Math. Anal. Appl. 265, 229-248 (2002)
    • (2002) J. Math. Anal. Appl. , vol.265 , pp. 229-248
    • Diethelm, K.1    Ford, N.J.2
  • 18
    • 47749084301 scopus 로고    scopus 로고
    • A chaotic system with one saddle and two stable node-foci
    • Yang, Q.G., Chen, G.R.: A chaotic system with one saddle and two stable node-foci. Int. J. Bifur. Chaos 18, 1393-1414 (2008)
    • (2008) Int. J. Bifur. Chaos , vol.18 , pp. 1393-1414
    • Yang, Q.G.1    Chen, G.R.2
  • 19
    • 77955776243 scopus 로고    scopus 로고
    • Dynamics of a new lorenzlike chaotic system
    • Liu, Y.J., Yang, Q.G.: Dynamics of a new Lorenzlike chaotic system. Nonlinear Anal.-Real 11, 2563-2572 (2009)
    • (2009) Nonlinear Anal.-Real , vol.11 , pp. 2563-2572
    • Liu, Y.J.1    Yang, Q.G.2
  • 21
    • 0036650479 scopus 로고    scopus 로고
    • A predictor-corrector approach for the numerical solution of fractional differential equations
    • Diethelm, K., Ford, N.J.: A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn. 29, 3-22 (2002)
    • (2002) Nonlinear Dyn. , vol.29 , pp. 3-22
    • Diethelm, K.1    Ford, N.J.2
  • 22
    • 45149102412 scopus 로고    scopus 로고
    • Fractional-order chua's circuit: Time-domain analysis, bifurcation, chaotic behavior and test for chaos
    • Cafagna, D., Grassi, G.: Fractional-order Chua's circuit: Time-domain analysis, bifurcation, chaotic behavior and test for chaos. Int. J. Bifur. Chaos 18, 615-639 (2008)
    • (2008) Int. J. Bifur. Chaos , vol.18 , pp. 615-639
    • Cafagna, D.1    Grassi, G.2
  • 23
    • 52149110344 scopus 로고    scopus 로고
    • Bifurcation and chaos in the fractional-order chen system via a time-domain approach
    • Cafagna, D., Grassi, G.: Bifurcation and chaos in the fractional-order Chen system via a time-domain approach. Int. J. Bifur. Chaos 18, 1845-1863 (2008)
    • (2008) Int. J. Bifur. Chaos , vol.18 , pp. 1845-1863
    • Cafagna, D.1    Grassi, G.2
  • 25
    • 44649156296 scopus 로고    scopus 로고
    • Limitations of frequency domain approximation for detecting chaos in fractional order systems
    • Tavazoei, M.S., Haeri, M.: Limitations of frequency domain approximation for detecting chaos in fractional order systems. Nonlinear Anal.-Theory 69, 1299-1320 (2008)
    • (2008) Nonlinear Anal.-Theory , vol.69 , pp. 1299-1320
    • Tavazoei, M.S.1    Haeri, M.2
  • 26
    • 37549047625 scopus 로고    scopus 로고
    • The evolution of chaotic dynamics for fractional unified system
    • Deng, W.H., Li, C.P.: The evolution of chaotic dynamics for fractional unified system. Phys. Lett. A 372, 401-407 (2008)
    • (2008) Phys. Lett. , vol.A 372 , pp. 401-407
    • Deng, W.H.1    Li, C.P.2
  • 27
    • 77951925589 scopus 로고    scopus 로고
    • An effective method for detecting chaos in fractional-order systems
    • Cafagna, D., Grassi, G.: An effective method for detecting chaos in fractional-order systems. Int. J. Bifur. Chaos 20, 669-678 (2010)
    • (2010) Int. J. Bifur. Chaos , vol.20 , Issue.669-678
    • Cafagna, D.1    Grassi, G.2
  • 28
    • 0008494528 scopus 로고
    • Determining lyapunov exponents from a time series
    • Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining Lyapunov exponents from a time series. Physica D 16, 285-317 (1985)
    • (1985) Physica D , vol.16 , pp. 285-317
    • Wolf, A.1    Swift, J.B.2    Swinney, H.L.3    Vastano, J.A.4
  • 30
    • 43949166788 scopus 로고
    • A practical method for calculating largest lyapunov exponents from small data sets
    • Rosenstein, M.T., Collins, J.J., De Luca, C.J.: A practical method for calculating largest Lyapunov exponents from small data sets. Physica D 65, 117-134 (1993)
    • (1993) Physica D , vol.65 , pp. 117-134
    • Rosenstein, M.T.1    Collins, J.J.2    De Luca, C.J.3
  • 31
    • 1442354755 scopus 로고    scopus 로고
    • Synchronization of fractional order chaotic systems
    • Li, C.G., Liao, X.X., Yu, J.B.: Synchronization of fractional order chaotic systems. Phys. Rev. E 68, 067203 (2003)
    • (2003) Phys. Rev. , vol.E 68 , pp. 067203
    • Li, C.G.1    Liao, X.X.2    Yu, J.B.3
  • 32
    • 27744462122 scopus 로고    scopus 로고
    • Synchronization in fractional-order differential systems
    • Zhou, T.S., Li, C.P.: Synchronization in fractional-order differential systems. Physica D 212, 111-125 (2005)
    • (2005) Physica D , vol.212 , pp. 111-125
    • Zhou, T.S.1    Li, C.P.2
  • 33
    • 18844427587 scopus 로고    scopus 로고
    • Chaos synchronization of the fractional lu system
    • Deng, W.H., Li, C.P.: Chaos synchronization of the fractional Lu system. Physica A 353, 61-72 (2005)
    • (2005) Physica A , vol.353 , pp. 61-72
    • Deng, W.H.1    Li, C.P.2
  • 34
    • 27744554781 scopus 로고    scopus 로고
    • Chaos synchronization of the chua system with a fractional order
    • Li, C.P., Deng, W.H., Xu, D.: Chaos synchronization of the Chua system with a fractional order. Physica A 360, 171-185 (2006)
    • (2006) Physica A , vol.360 , pp. 171-185
    • Li, C.P.1    Deng, W.H.2    Xu, D.3
  • 35
    • 33646366905 scopus 로고    scopus 로고
    • Chaotic dynamics of the fractional order lu system and its synchronization
    • Lu, J.G.: Chaotic dynamics of the fractional order Lu system and its synchronization. Phys. Lett. A 354, 305-311 (2006)
    • (2006) Phys. Lett. , vol.A 354 , pp. 305-311
    • Lu, J.G.1
  • 36
    • 33847065079 scopus 로고    scopus 로고
    • Synchronization of fractional order chaotic systems
    • Peng, G.J.: Synchronization of fractional order chaotic systems. Phys. Lett. A 363, 426-432 (2007)
    • (2007) Phys. Lett. , vol.A 363 , pp. 426-432
    • Peng, G.J.1
  • 37
    • 67449143115 scopus 로고    scopus 로고
    • Generalized projective synchronization of the fractional-order chen hyperchaotic system
    • Wu, X.J., Lu, Y.: Generalized projective synchronization of the fractional-order Chen hyperchaotic system. Nonlinear Dyn. 57, 25-35 (2009)
    • (2009) Nonlinear Dyn. , vol.57 , pp. 25-35
    • Wu, X.J.1    Lu, Y.2
  • 38
    • 77649232335 scopus 로고    scopus 로고
    • Network synchronization in a population of star-coupled fractional nonlinear oscillators
    • Wang, J.W., Zhang, Y.B.: Network synchronization in a population of star-coupled fractional nonlinear oscillators. Phys. Lett. A 374, 1464-1468 (2010)
    • (2010) Phys. Lett. , vol.A 374 , pp. 1464-1468
    • Wang, J.W.1    Zhang, Y.B.2
  • 39
    • 77955654277 scopus 로고    scopus 로고
    • Adaptive feedback control and synchronization of non-identical chaotic fractional order systems
    • Odibat, Z.: Adaptive feedback control and synchronization of non-identical chaotic fractional order systems. Nonlinear Dyn. 60, 479-487 (2010)
    • (2010) Nonlinear Dyn. , vol.60 , Issue.479-487
    • Odibat, Z.1
  • 40
    • 68949101678 scopus 로고    scopus 로고
    • Design of coupling for synchronization of chaotic oscillators
    • Grosu, I., Banerjee, R., Roy, P.K., Dana, S.K.: Design of coupling for synchronization of chaotic oscillators. Phys. Rev. E 80, 016212 (2009)
    • (2009) Phys. Rev. , vol.E 80 , pp. 016212
    • Grosu, I.1    Banerjee, R.2    Roy, P.K.3    Dana, S.K.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.