메뉴 건너뛰기




Volumn 17, Issue 3, 2012, Pages 201-207

Forward power-train energy management modeling for assessing benefits of integrating predictive traffic data into plug-in-hybrid electric vehicles

Author keywords

Driving cycle optimization; Intelligent transportation systems; Plug in hybrid electric vehicles

Indexed keywords

EFFICIENCY; ENERGY EFFICIENCY; ENERGY MANAGEMENT; ENERGY MANAGEMENT SYSTEMS; HYBRID VEHICLES; INTELLIGENT SYSTEMS; INTELLIGENT VEHICLE HIGHWAY SYSTEMS; OPTIMIZATION; POWER MANAGEMENT; TRAFFIC CONTROL; TRANSPORTATION; VEHICLES;

EID: 84855267417     PISSN: 13619209     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.trd.2011.11.001     Document Type: Article
Times cited : (46)

References (8)
  • 1
    • 33846863388 scopus 로고    scopus 로고
    • Number and location of sensors for real-time network traffic estimation and prediction: sensitivity analysis
    • Eisenman S.M., Fei X., Zhou X., Mahmassani H.S. Number and location of sensors for real-time network traffic estimation and prediction: sensitivity analysis. Transportation Research Record 2006, 1964:253-259.
    • (2006) Transportation Research Record , vol.1964 , pp. 253-259
    • Eisenman, S.M.1    Fei, X.2    Zhou, X.3    Mahmassani, H.S.4
  • 3
    • 84856805501 scopus 로고    scopus 로고
    • Vehicle-infrastructure integration-enabled plug-in hybrid electric vehicles for optimizing energy consumption.
    • Proceedings of the 2011 Transportation Research Board Annual Meeting, Washington, DC.
    • He, Y., Chowdhury, M., Pisu, P., Kang, X., Johnson, J., 2011. Vehicle-infrastructure integration-enabled plug-in hybrid electric vehicles for optimizing energy consumption. In: Proceedings of the 2011 Transportation Research Board Annual Meeting, Washington, DC.
    • (2011)
    • He, Y.1    Chowdhury, M.2    Pisu, P.3    Kang, X.4    Johnson, J.5
  • 4
    • 72649094047 scopus 로고    scopus 로고
    • Real-time traffic condition assessment and prediction framework using vehicle-infrastructure integration (VII) with computational intelligence
    • Ma Y. Real-time traffic condition assessment and prediction framework using vehicle-infrastructure integration (VII) with computational intelligence. IEEE Transactions on Intelligent Transportation Systems 2009, 10:615-617.
    • (2009) IEEE Transactions on Intelligent Transportation Systems , vol.10 , pp. 615-617
    • Ma, Y.1
  • 5
    • 33847184919 scopus 로고    scopus 로고
    • Energy management and drivability control problems for hybrid electric vehicles. In: Decision and Control, 2005 and 2005 European Control Conference.
    • CDC-ECC'05. 44th IEEE Conference.
    • Pisu, P., Koprubasi, K., Rizzoni, G., 2006. Energy management and drivability control problems for hybrid electric vehicles. In: Decision and Control, 2005 and 2005 European Control Conference. CDC-ECC'05. 44th IEEE Conference.
    • (2006)
    • Pisu, P.1    Koprubasi, K.2    Rizzoni, G.3
  • 6
    • 85072449594 scopus 로고    scopus 로고
    • Plug-in Hybrid Electric Vehicle Control Strategy: Comparison between EV and Charge Depleting Options.
    • Sharer, P.B., Rousseau, A.P., Karbowski, D., Pagerit, S., 2008. Plug-in Hybrid Electric Vehicle Control Strategy: Comparison between EV and Charge Depleting Options.
    • (2008)
    • Sharer, P.B.1    Rousseau, A.P.2    Karbowski, D.3    Pagerit, S.4
  • 7
    • 85029828419 scopus 로고    scopus 로고
    • US Department of Energy, 2011. Alternative Fuels and Advanced Vehicles Data Center: Vehicles 2011 (02/08/2011), Washington, DC.
    • US Department of Energy, 2011. Alternative Fuels and Advanced Vehicles Data Center: Vehicles 2011 (02/08/2011), Washington, DC.
  • 8
    • 85029888424 scopus 로고    scopus 로고
    • US Energy Information Administration, 2010. International Energy Outlook 2010. DOE/EIA-0484(2010), Washington, DC.
    • US Energy Information Administration, 2010. International Energy Outlook 2010. DOE/EIA-0484(2010), Washington, DC.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.