메뉴 건너뛰기




Volumn 112, Issue , 2011, Pages 835-843

Study on identification method of tool wear based on singular value decomposition and least squares support vector machine

Author keywords

Empirical Mode Decomposition; Least Squares Support Vector Machine; Singular Value Decomposition; Tool wear condition monitoring

Indexed keywords

ACOUSTIC EMISSION SIGNAL; BP NEURAL NETWORKS; CONVERGENCE RATES; EMPIRICAL MODE DECOMPOSITION; EMPIRICAL MODE DECOMPOSITION METHOD; FEATURE VECTOR MATRIX; FEATURE VECTORS; IDENTIFICATION METHOD; IDENTIFICATION RATES; INTRINSIC MODE FUNCTIONS; LEAST SQUARES SUPPORT VECTOR MACHINE; LEAST SQUARES SUPPORT VECTOR MACHINES; LOCAL MINIMUMS; NONSTATIONARY; SINGULAR SPECTRUM; SINGULAR VALUE DECOMPOSITION METHOD; SINGULAR VALUES; TOOL WEAR;

EID: 84855225548     PISSN: 18675662     EISSN: None     Source Type: Book Series    
DOI: 10.1007/978-3-642-25194-8_98     Document Type: Conference Paper
Times cited : (2)

References (11)
  • 1
    • 0036027418 scopus 로고    scopus 로고
    • A brief review: Acoustic emission method for tool wear monitoring during turning
    • Li, X.: A brief review: acoustic emission method for tool wear monitoring during turning. Int. J. Mach. Tool Manuf. 42, 157-165 (2002)
    • (2002) Int. J. Mach. Tool Manuf. , vol.42 , pp. 157-165
    • Li, X.1
  • 2
    • 43649087943 scopus 로고    scopus 로고
    • Tool condition monitoring in micromilling base on hierarchical integration of signal measures
    • Jemielniak, K., Bombinski, S.: Tool condition monitoring in micromilling base on hierarchical integration of signal measures. CIPP Annals Manufacturing Technology 57, 121-124 (2008)
    • (2008) CIPP Annals Manufacturing Technology , vol.57 , pp. 121-124
    • Jemielniak, K.1    Bombinski, S.2
  • 5
    • 5444236478 scopus 로고    scopus 로고
    • The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
    • Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., et al.: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. A 454, 903-995 (1998)
    • (1998) Proc. R. Soc. Lond. A , vol.454 , pp. 903-995
    • Huang, N.E.1    Shen, Z.2    Long, S.R.3    Wu, M.C.4    Shih, H.H.5    Zheng, Q.6
  • 6
    • 44449093664 scopus 로고    scopus 로고
    • Identification method of gas-liquid two -phase flow regime based on empirical mode decomposition
    • Sun, B., Huang, S., Zhou, Y., Guan, Y.: Identification method of gas-liquid two -phase flow regime based on empirical mode decomposition. Chinese Journal of Scientific Instrument 29, 1011-1015 (2008)
    • (2008) Chinese Journal of Scientific Instrument , vol.29 , pp. 1011-1015
    • Sun, B.1    Huang, S.2    Zhou, Y.3    Guan, Y.4
  • 7
    • 65249084593 scopus 로고    scopus 로고
    • Pulse signal feature research based on empirical mode decomposition
    • Xing, H., Xu, R., Wang, C.: Pulse signal feature research based on empirical mode decomposition. Chinese Journal of Scientific Instrument 30, 596-602 (2009)
    • (2009) Chinese Journal of Scientific Instrument , vol.30 , pp. 596-602
    • Xing, H.1    Xu, R.2    Wang, C.3
  • 8
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machine classifiers
    • Suyken, J.A.K., Vandewalle, J.: Least squares support vector machine classifiers. Neural Processing Letters 9, 293-300 (1999)
    • (1999) Neural Processing Letters , vol.9 , pp. 293-300
    • Suyken, J.A.K.1    Vandewalle, J.2
  • 11
    • 37449004819 scopus 로고    scopus 로고
    • Support Vector Machines and its applications in machine fault diagnosis
    • Yuan, S.-F., Chu, F.-L.: Support Vector Machines and its applications in machine fault diagnosis. Journal of Vibration and Shock 26, 29-35 (2007)
    • (2007) Journal of Vibration and Shock , vol.26 , pp. 29-35
    • Yuan, S.-F.1    Chu, F.-L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.