-
1
-
-
11844260107
-
Dynamics of a class of non-autonomous systems of two non-interacting preys with common predator
-
E.M. Elabbasy, and S.H. Saker Dynamics of a class of non-autonomous systems of two non-interacting preys with common predator J. Appl. Math. Comput. 17 2005 195 215 (Pubitemid 40096962)
-
(2005)
Journal of Applied Mathematics and Computing
, vol.17
, Issue.1-2
, pp. 195-215
-
-
Elabbasy, E.M.1
Saker, S.H.2
-
2
-
-
0001625228
-
Predatorprey interactions of cod and capelin in Icelandic waters
-
K.G. Magnusson, O.K. Palsson, Predatorprey interactions of cod and capelin in Icelandic waters, in: ICES Marine Science Symposium, vol. 193, 1991, pp. 153170.
-
(1991)
ICES Marine Science Symposium
, vol.193
, pp. 153-170
-
-
Magnusson, K.G.1
Palsson, O.K.2
-
3
-
-
0038442683
-
Functions used in biological models and their influence on simulations
-
H. Gao, H. Wei, W. Sun, and X. Zhai Functions used in biological models and their influence on simulations Indian J. Mar. Sci. 29 2000 230 237
-
(2000)
Indian J. Mar. Sci.
, vol.29
, pp. 230-237
-
-
Gao, H.1
Wei, H.2
Sun, W.3
Zhai, X.4
-
4
-
-
0002366911
-
The functional response of predator to prey density and its role in mimicry and population regulation
-
C.S. Holling The functional response of predator to prey density and its role in mimicry and population regulation Mem. Entomol. Soc. Can. 45 1965 1 60
-
(1965)
Mem. Entomol. Soc. Can.
, vol.45
, pp. 1-60
-
-
Holling, C.S.1
-
7
-
-
33645778833
-
Allee effects in a discrete-time hostparasitoid model
-
S.R.J. Jang Allee effects in a discrete-time hostparasitoid model J. Difference Equ. Appl. 12 2 2006 165 181
-
(2006)
J. Difference Equ. Appl.
, vol.12
, Issue.2
, pp. 165-181
-
-
Jang, S.R.J.1
-
9
-
-
33748554203
-
Complex dynamic behaviors of a discrete-time predator-prey system
-
DOI 10.1016/j.chaos.2005.10.081, PII S0960077905010325
-
X. Liu, and D. Xiao Complex dynamic behaviors of a discrete-time predatorprey system Chaos Solitons Fractals 32 2007 80 94 (Pubitemid 44374962)
-
(2007)
Chaos, Solitons and Fractals
, vol.32
, Issue.1
, pp. 80-94
-
-
Liu, X.1
Xiao, D.2
-
10
-
-
0037401906
-
A nonstandard finite-difference scheme for the LotkaVolterra system
-
R.E. Mickens A nonstandard finite-difference scheme for the LotkaVolterra system Appl. Numer. Math. 45 2003 309 314
-
(2003)
Appl. Numer. Math.
, vol.45
, pp. 309-314
-
-
Mickens, R.E.1
-
11
-
-
34648843358
-
Stability and bifurcation in a discrete-time predatorprey model
-
K. Murakami Stability and bifurcation in a discrete-time predatorprey model J. Difference Equ. Appl. 10 2007 911 925
-
(2007)
J. Difference Equ. Appl.
, vol.10
, pp. 911-925
-
-
Murakami, K.1
-
12
-
-
0026616717
-
The subcritical collapse of predator populations in discrete-time predator-prey models
-
DOI 10.1016/0025-5564(92)90014-N
-
M.G. Neubert, and M. Kot The subcritical collapse of predator populations in discrete-time predatorprey models Math. Biosci. 110 1992 45 66 (Pubitemid 23403130)
-
(1992)
Mathematical Biosciences
, vol.110
, Issue.1
, pp. 45-66
-
-
Neubert, M.G.1
Kot, M.2
-
14
-
-
0034326126
-
Chaos in periodically forced discrete-time ecosystem models
-
D. Summers, C. Justian, and H. Brian Chaos in periodically forced discrete-time ecosystem models Chaos Solitons Fractals 11 2000 2331 2342
-
(2000)
Chaos Solitons Fractals
, vol.11
, pp. 2331-2342
-
-
Summers, D.1
Justian, C.2
Brian, H.3
-
17
-
-
0025346462
-
The discrete Rosenzweig model
-
DOI 10.1016/0025-5564(90)90011-M
-
K.P. Hadeler, and I. Gerstmann The discrete Rosenzweig model Math. Biosci. 98 1990 49 72 (Pubitemid 20200374)
-
(1990)
Mathematical Biosciences
, vol.98
, Issue.1
, pp. 49-72
-
-
Hadeler, K.P.1
Gerstmann, I.2
-
18
-
-
0015243940
-
Paradox of enrichment: Destabilization of exploitation ecosystems in ecological time
-
M. Rosenzweig Paradox of enrichment: destabilization of exploitation ecosystems in ecological time Science 171 1971 385 387
-
(1971)
Science
, vol.171
, pp. 385-387
-
-
Rosenzweig, M.1
-
20
-
-
77957794727
-
Bifurcations of a discrete preypredator model with Holling type II functional response
-
S. Li, and W. Zhang Bifurcations of a discrete preypredator model with Holling type II functional response Discrete Contin. Dyn. Syst. 14 2010 159 176
-
(2010)
Discrete Contin. Dyn. Syst.
, vol.14
, pp. 159-176
-
-
Li, S.1
Zhang, W.2
-
21
-
-
80052652287
-
Codimension-two bifurcations of fixed points in a class of discrete preypredator systems
-
10.1155/2011/862494 Article ID 862494, 27 pages
-
R. Khoshsiar Ghaziani, W. Govaerts, and C. Sonck Codimension-two bifurcations of fixed points in a class of discrete preypredator systems Discrete Dyn. Nat. Soc. 2011 2011 10.1155/2011/862494 Article ID 862494, 27 pages
-
(2011)
Discrete Dyn. Nat. Soc.
, vol.2011
-
-
Khoshsiar Ghaziani, R.1
Govaerts, W.2
Sonck, C.3
-
22
-
-
45049087841
-
Numerical methods for two-parameter local bifurcation analysis of maps
-
W. Govaerts, R. Khoshsiar Ghaziani, Yu.A. Kuznetsov, and H.G.E. Meijer Numerical methods for two-parameter local bifurcation analysis of maps SIAM J. Sci. Comput. 29 6 2007 2644 2667
-
(2007)
SIAM J. Sci. Comput.
, vol.29
, Issue.6
, pp. 2644-2667
-
-
Govaerts, W.1
Khoshsiar Ghaziani, R.2
Kuznetsov, Yu.A.3
Meijer, H.G.E.4
-
26
-
-
30844441054
-
Opere Matematiche: Memorie e Note
-
Roma, Cremon
-
V. Volterra, Opere Matematiche: Memorie e Note, vol. V, Acc. Naz. dei Lincei, Roma, Cremon, 1926.
-
(1926)
Acc. Naz. Dei Lincei
, vol.5
-
-
Volterra, V.1
-
27
-
-
0029325665
-
Global stability for a class of predatorprey systems
-
S.B. Hsu, and T.W. Hwang Global stability for a class of predatorprey systems SIAM J. Appl. Math. 55 1995 763 783
-
(1995)
SIAM J. Appl. Math.
, vol.55
, pp. 763-783
-
-
Hsu, S.B.1
Hwang, T.W.2
-
29
-
-
0003475470
-
-
second corrected ed. Springer Berlin, Heidelberg, New York
-
J.D. Murray Mathematical Biology second corrected ed. 1993 Springer Berlin, Heidelberg, New York
-
(1993)
Mathematical Biology
-
-
Murray, J.D.1
-
31
-
-
0033421670
-
Chaos, cantor sets, and hyperbolicity for the logistic maps
-
R.L. Kraft Chaos, cantor sets, and hyperbolicity for the logistic maps Amer. Math. Monthly 106 1999 400 408
-
(1999)
Amer. Math. Monthly
, vol.106
, pp. 400-408
-
-
Kraft, R.L.1
|