-
2
-
-
0018982701
-
Time-frequency representation of digital signals and systems based on short-time Fourier analysis
-
Feb.
-
M. R. Portnoff, “Time-frequency representation of digital signals and systems based on short-time Fourier analysis,” IEEE Trans. Acoust., Speech, Signal Process., vol. ASSP-28, no. 1, pp. 55–69, Feb. 1980.
-
(1980)
IEEE Trans. Acoust., Speech, Signal Process.
, vol.ASSP-28
, Issue.1
, pp. 55-69
-
-
Portnoff, M.R.1
-
3
-
-
0024700097
-
A theory for multiresolution signal decomposition: The wavelet representation
-
Jul.
-
S. G. Mallat, “A theory for multiresolution signal decomposition: The wavelet representation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 11, no. 7, pp. 674–693, Jul. 1989.
-
(1989)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.11
, Issue.7
, pp. 674-693
-
-
Mallat, S.G.1
-
5
-
-
77958407025
-
The fractional order Fourier transform and its application to quantum mechanics
-
Mar.
-
V. Namias, “The fractional order Fourier transform and its application to quantum mechanics,” J. Inst. Math. Appl., vol. 25, no. 3, pp. 241–265, Mar. 1980.
-
(1980)
J. Inst. Math. Appl.
, vol.25
, Issue.3
, pp. 241-265
-
-
Namias, V.1
-
6
-
-
77957689582
-
On Namias fractional Fourier transforms
-
A. C. McBride and F. H. Kerr, “On Namias fractional Fourier transforms,” IMA J. Appl. Math., vol. 39, no. 2, pp. 159–175, 1987.
-
(1987)
IMA J. Appl. Math.
, vol.39
, Issue.2
, pp. 159-175
-
-
McBride, A.C.1
Kerr, F.H.2
-
7
-
-
0032295753
-
A unified framework for the fractional Fourier transform
-
Dec.
-
G. Cariolaro, T. Erseghe, P. Kraniauskas, and N. Laurenti, “A unified framework for the fractional Fourier transform,” IEEE Trans. Signal Process., vol. 46, no. 12, pp. 3206–3219, Dec. 1998.
-
(1998)
IEEE Trans. Signal Process.
, vol.46
, Issue.12
, pp. 3206-3219
-
-
Cariolaro, G.1
Erseghe, T.2
Kraniauskas, P.3
Laurenti, N.4
-
8
-
-
0030243105
-
Digital computation of the fractional Fourier transforms
-
Sep.
-
H. M. Ozaktas, O. Arikan, M. A. Kutay, and G. Bozdagt, “Digital computation of the fractional Fourier transforms,” IEEE Trans. Signal Process., vol. 44, no. 9, pp. 2141–2150, Sep. 1996.
-
(1996)
IEEE Trans. Signal Process.
, vol.44
, Issue.9
, pp. 2141-2150
-
-
Ozaktas, H.M.1
Arikan, O.2
Kutay, M.A.3
Bozdagt, G.4
-
9
-
-
0032669485
-
Discrete fractional Fourier transform based on orthogonal projections
-
May
-
S. C. Pei, M. H. Yeh, and C. C. Tseng, “Discrete fractional Fourier transform based on orthogonal projections,” IEEE Trans. Signal Process., vol. 47, no. 5, pp. 1335–1348, May 1999.
-
(1999)
IEEE Trans. Signal Process.
, vol.47
, Issue.5
, pp. 1335-1348
-
-
Pei, S.C.1
Yeh, M.H.2
Tseng, C.C.3
-
10
-
-
38549139189
-
Random fractional Fourier transform
-
Aug.
-
Z. Liu and S. Liu, “Random fractional Fourier transform,” Opt. Lett., vol. 32, no. 15, pp. 2088–2090, Aug. 2007.
-
(2007)
Opt. Lett.
, vol.32
, Issue.15
, pp. 2088-2090
-
-
Liu, Z.1
Liu, S.2
-
11
-
-
27144498138
-
A discrete fractional random transform
-
Nov.
-
Z. Liu, H. Zhao, and S. Liu, “A discrete fractional random transform,” Opt. Commun., vol. 255, no. 4-6, pp. 357–365, Nov. 2005.
-
(2005)
Opt. Commun.
, vol.255
, Issue.4-6
, pp. 357-365
-
-
Liu, Z.1
Zhao, H.2
Liu, S.3
-
12
-
-
0031187392
-
Fractional wavelet transform
-
Jul.
-
D. Mendlovic, Z. Zalevsky, D. Mas, J. Garcia, and C. Ferreira, “Fractional wavelet transform,” Appl. Opt., vol. 36, no. 20, pp. 4801–4806, Jul. 1997.
-
(1997)
Appl. Opt.
, vol.36
, Issue.20
, pp. 4801-4806
-
-
Mendlovic, D.1
Zalevsky, Z.2
Mas, D.3
Garcia, J.4
Ferreira, C.5
-
14
-
-
58149117608
-
Unification of evidence-theoretic fusion algorithms: A case study in Level-2 and Level-3 fingerprint features
-
Jan.
-
M. Vatsa, R. Singh, and A. Noore, “Unification of evidence-theoretic fusion algorithms: A case study in Level-2 and Level-3 fingerprint features,” IEEE Trans. Syst., Man, Cybern. A, Syst., Humans, vol. 39, no. 1, pp. 47–56, Jan. 2009.
-
(2009)
IEEE Trans. Syst., Man, Cybern. A, Syst., Humans
, vol.39
, Issue.1
, pp. 47-56
-
-
Vatsa, M.1
Singh, R.2
Noore, A.3
-
15
-
-
77951209095
-
Cancelable templates for sequence-based biometrics with application to online signature recognition
-
May
-
E. Maiorana, P. Campisi, J. Fiérrez, J. Ortega-Garcia, and A. Neri, “Cancelable templates for sequence-based biometrics with application to online signature recognition,” IEEE Trans. Syst., Man, Cybern. A, Syst., Humans, vol. 40, no. 3, pp. 525–538, May 2010.
-
(2010)
IEEE Trans. Syst., Man, Cybern. A, Syst., Humans
, vol.40
, Issue.3
, pp. 525-538
-
-
Maiorana, E.1
Campisi, P.2
Fiérrez, J.3
Ortega-Garcia, J.4
Neri, A.5
-
18
-
-
0003725910
-
Secure private key generation using a fingerprint
-
C. Soutar and G. J. Tomko, “Secure private key generation using a fingerprint,” in Proc. CardTech/SecurTech Conf., 1996, vol. 1, pp. 245–252.
-
(1996)
Proc. CardTech/SecurTech Conf.
, vol.1
, pp. 245-252
-
-
Soutar, C.1
Tomko, G.J.2
-
19
-
-
0034809453
-
Enhancing security and privacy in biometrics-based authentication systems
-
Mar.
-
N. K. Ratha, J. Connell, and R. Bolle, “Enhancing security and privacy in biometrics-based authentication systems,” IBM Syst. J., vol. 40, no. 3, pp. 614–634, Mar. 2001.
-
(2001)
IBM Syst. J.
, vol.40
, Issue.3
, pp. 614-634
-
-
Ratha, N.K.1
Connell, J.2
Bolle, R.3
-
20
-
-
33747174534
-
An efficient selective encryption of fingerprint images for embedded processors
-
Aug.
-
D. Moon, Y. Chung, S. B. Pan, K. Moon, and K. I. Chung, “An efficient selective encryption of fingerprint images for embedded processors,” ETRI J., vol. 28, no. 4, pp. 444–452, Aug. 2006.
-
(2006)
ETRI J.
, vol.28
, Issue.4
, pp. 444-452
-
-
Moon, D.1
Chung, Y.2
Pan, S.B.3
Moon, K.4
Chung, K.I.5
-
21
-
-
0031641422
-
From chaotic maps to encryption schemes
-
L. Kocarev, G. Jakimoski, T. Stojanovski, and U. Parlitz, “From chaotic maps to encryption schemes,” in Proc. IEEE Int. Symp. Circuits Syst., Monterey, CA, 1998, vol. 4, pp. 514–517.
-
(1998)
Proc. IEEE Int. Symp. Circuits Syst., Monterey, CA
, vol.4
, pp. 514-517
-
-
Kocarev, L.1
Jakimoski, G.2
Stojanovski, T.3
Parlitz, U.4
-
22
-
-
0035250017
-
Chaos and cryptography: Block encryption ciphers based on chaotic maps
-
Feb.
-
G. Jakimoski and L. Kocarev, “Chaos and cryptography: Block encryption ciphers based on chaotic maps,” IEEE Trans. Circuits Syst., vol. 48, no. 2, pp. 163–169, Feb. 2001.
-
(2001)
IEEE Trans. Circuits Syst.
, vol.48
, Issue.2
, pp. 163-169
-
-
Jakimoski, G.1
Kocarev, L.2
-
24
-
-
12244258246
-
An image encryption approach based on chaotic maps
-
May
-
L. Zhang, X. Liao, and X. Wang, “An image encryption approach based on chaotic maps,” Chaos, Solitons & Fractals, vol. 24, no. 3, pp. 759–765, May 2005.
-
(2005)
Chaos, Solitons & Fractals
, vol.24
, Issue.3
, pp. 759-765
-
-
Zhang, L.1
Liao, X.2
Wang, X.3
-
25
-
-
34547536349
-
-
San Rafael, CA: Morgan & Claypool Publ.
-
Z. Wang and A. C. Bovik, Modern Image Quality Assessment, Synthesis Lectures on Image, Video & Multimedia Processing. San Rafael, CA: Morgan & Claypool Publ., 2006.
-
(2006)
Modern Image Quality Assessment, Synthesis Lectures on Image, Video & Multimedia Processing
-
-
Wang, Z.1
Bovik, A.C.2
-
26
-
-
79960509746
-
FSIM: A feature similarity index for image quality assessment
-
to be published
-
L. Zhang, L. Zhang, X. Mou, and D. Zhang, “FSIM: A feature similarity index for image quality assessment,” IEEE Trans. Image Process., 2011, to be published.
-
(2011)
IEEE Trans. Image Process.
-
-
Zhang, L.1
Zhang, L.2
Mou, X.3
Zhang, D.4
-
27
-
-
78651062305
-
RFSIM: A feature based image quality assessment metric using Riesz transforms
-
L. Zhang, L. Zhang, and X. Mou, “RFSIM: A feature based image quality assessment metric using Riesz transforms,” in Proc. Int. Conf. Image Process., 2010, pp. 321–324.
-
(2010)
Proc. Int. Conf. Image Process.
, pp. 321-324
-
-
Zhang, L.1
Zhang, L.2
Mou, X.3
-
28
-
-
0031233235
-
An identity-authentication system using fingerprints
-
Sep.
-
A. K. Jain, L. Hong, S. Pankanti, and R. Bolle, “An identity-authentication system using fingerprints,” Proc. IEEE, vol. 85, no. 9, pp. 1365–1388, Sep. 1997.
-
(1997)
Proc. IEEE
, vol.85
, Issue.9
, pp. 1365-1388
-
-
Jain, A.K.1
Hong, L.2
Pankanti, S.3
Bolle, R.4
|