메뉴 건너뛰기




Volumn 75, Issue 4, 2012, Pages 1919-1926

Controllability of nonlinear fractional dynamical systems

Author keywords

Controllability; Existence of a solution; Fractional dynamical system; Fractional models

Indexed keywords

FRACTIONAL DIFFERENTIAL EQUATIONS; FRACTIONAL MODEL; SCHAUDER FIXED-POINT THEOREM; SOLUTION REPRESENTATION; SUFFICIENT CONDITIONS;

EID: 84655160850     PISSN: 0362546X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.na.2011.09.042     Document Type: Article
Times cited : (121)

References (32)
  • 1
    • 34247477202 scopus 로고    scopus 로고
    • On fractional order differential equations model for nonlocal epidemics
    • DOI 10.1016/j.physa.2007.01.010, PII S0378437107000623
    • E. Ahmeda, and A. Elgazzar On fractional order differential equations model for nonlocal epidemics J. Phys. A: Math. Gen. 379 2 2007 607 614 (Pubitemid 46654665)
    • (2007) Physica A: Statistical Mechanics and its Applications , vol.379 , Issue.2 , pp. 607-614
    • Ahmed, E.1    Elgazzar, A.S.2
  • 2
    • 34247323827 scopus 로고    scopus 로고
    • Fractional differential equations as alternative models to nonlinear differential equations
    • DOI 10.1016/j.amc.2006.08.105, PII S0096300306011398
    • B. Bonilla, M. Rivero, L. Rodriguez-Germa, and J.J. Trujillo Fractional differential equations as alternative models to nonlinear differential equations Appl. Math. Comput. 187 1 2007 79 88 (Pubitemid 46635706)
    • (2007) Applied Mathematics and Computation , vol.187 , Issue.SPEC. ISS.1 , pp. 79-88
    • Bonilla, B.1    Rivero, M.2    Rodriguez-Germa, L.3    Trujillo, J.J.4
  • 3
    • 0030531939 scopus 로고
    • Fractional order diffusion wave equation
    • M.A.A. El-Sayeed Fractional order diffusion wave equation Int. J. Theoret. Phys. 35 2 1966 311 322
    • (1966) Int. J. Theoret. Phys. , vol.35 , Issue.2 , pp. 311-322
    • El-Sayeed, M.A.A.1
  • 5
    • 0002641421 scopus 로고    scopus 로고
    • Random walk's guide to anomalous diffusion: A fractional dynamics approach
    • R. Metzler, and J. Klafter Random walk's guide to anomalous diffusion: a fractional dynamics approach Phys. Rep. 339 1 2000 1 77
    • (2000) Phys. Rep. , vol.339 , Issue.1 , pp. 1-77
    • Metzler, R.1    Klafter, J.2
  • 6
    • 56049105387 scopus 로고    scopus 로고
    • Analytical approximations for population growth model with fractional order
    • H. Xu Analytical approximations for population growth model with fractional order Commun. Nonlinear Sci. Numer. Simul. 14 5 2009 1978 1983
    • (2009) Commun. Nonlinear Sci. Numer. Simul. , vol.14 , Issue.5 , pp. 1978-1983
    • Xu, H.1
  • 7
    • 4043151477 scopus 로고    scopus 로고
    • The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by fractional dynamics
    • R. Metzler, and J. Klafter The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics J. Phys. A: Math. Gen. 37 31 2004 161 208
    • (2004) J. Phys. A: Math. Gen. , vol.37 , Issue.31 , pp. 161-208
    • Metzler, R.1    Klafter, J.2
  • 8
    • 77950369029 scopus 로고    scopus 로고
    • The nonlocal Cauchy problem for nonlinear fractional integrodifferential equations in Banach spaces
    • K. Balachandran, and J.J. Trujillo The nonlocal Cauchy problem for nonlinear fractional integrodifferential equations in Banach spaces Nonlinear Anal. Theory Methods Appl. 72 12 2010 4587 4593
    • (2010) Nonlinear Anal. Theory Methods Appl. , vol.72 , Issue.12 , pp. 4587-4593
    • Balachandran, K.1    Trujillo, J.J.2
  • 10
    • 0001110962 scopus 로고    scopus 로고
    • Coprime factorizations and stability of fractional differential systems
    • C. Bonnet, and J.R. Partington Coprime factorizations and stability of fractional differential systems Systems Control Lett. 41 3 2000 167 174
    • (2000) Systems Control Lett. , vol.41 , Issue.3 , pp. 167-174
    • Bonnet, C.1    Partington, J.R.2
  • 11
    • 43749118342 scopus 로고    scopus 로고
    • Linear stability of fractional reactiondiffusion systems
    • Y. Nec, and A.A. Nepomnyashchy Linear stability of fractional reactiondiffusion systems Math. Model. Nat. Phenom. 2 2 2007 77 105
    • (2007) Math. Model. Nat. Phenom. , vol.2 , Issue.2 , pp. 77-105
    • Nec, Y.1    Nepomnyashchy, A.A.2
  • 21
    • 47249132154 scopus 로고    scopus 로고
    • Finite time controllability of fractional order systems
    • J.L. Adams, and T.T. Hartley Finite time controllability of fractional order systems Int. J. Comput. Numer. Dyn. 3 2 2008 0214021 0214025
    • (2008) Int. J. Comput. Numer. Dyn. , vol.3 , Issue.2 , pp. 0214021-0214025
    • Adams, J.L.1    Hartley, T.T.2
  • 22
    • 52349091808 scopus 로고    scopus 로고
    • New results on the controllability and observability of fractional dynamical systems
    • M. Bettayeb, and S. Djennoune New results on the controllability and observability of fractional dynamical systems J. Vib. Control 14 910 2008 1531 1541
    • (2008) J. Vib. Control , vol.14 , Issue.910 , pp. 1531-1541
    • Bettayeb, M.1    Djennoune, S.2
  • 23
    • 33745698037 scopus 로고    scopus 로고
    • Robust controllability of interval fractional order linear time invariant systems
    • Y. Chen, H.S. Ahn, and D. Xue Robust controllability of interval fractional order linear time invariant systems Signal Process. 86 10 2006 2794 2802
    • (2006) Signal Process. , vol.86 , Issue.10 , pp. 2794-2802
    • Chen, Y.1    Ahn, H.S.2    Xue, D.3
  • 24
    • 68749108944 scopus 로고    scopus 로고
    • Controllability and observability for fractional control systems
    • A.B. Shamardan, and M.R.A. Moubarak Controllability and observability for fractional control systems J. Fract. Calc. 15 1 1999 25 34
    • (1999) J. Fract. Calc. , vol.15 , Issue.1 , pp. 25-34
    • Shamardan, A.B.1    Moubarak, M.R.A.2
  • 28
    • 34247394106 scopus 로고    scopus 로고
    • On systems of linear fractional differential equations with constant coefficients
    • DOI 10.1016/j.amc.2006.08.104, PII S0096300306011386
    • B. Bonilla, M. Rivero, and J.J. Trujillo On systems of linear fractional differential equations with constant coefficients Appl. Math. Comput. 87 1 2007 68 78 (Pubitemid 46635705)
    • (2007) Applied Mathematics and Computation , vol.187 , Issue.SPEC. ISS.1 , pp. 68-78
    • Bonilla, B.1    Rivero, M.2    Trujillo, J.J.3
  • 29
    • 79961173857 scopus 로고    scopus 로고
    • Laplace transform and fractional differential equations
    • K. Li, and J. Peng Laplace transform and fractional differential equations Appl. Math. Lett. 24 12 2011 2019 2023
    • (2011) Appl. Math. Lett. , vol.24 , Issue.12 , pp. 2019-2023
    • Li, K.1    Peng, J.2
  • 30
    • 46749136778 scopus 로고    scopus 로고
    • Presentation of solutions of linear systems with fractional derivatives in the sense of RiemannLiouville, Caputo and MillerRoss
    • A.A. Chikrii, and I.I. Matichin Presentation of solutions of linear systems with fractional derivatives in the sense of RiemannLiouville, Caputo and MillerRoss J. Automation Inf. Sci. 40 6 2008 1 11
    • (2008) J. Automation Inf. Sci. , vol.40 , Issue.6 , pp. 1-11
    • Chikrii, A.A.1    Matichin, I.I.2
  • 31
    • 0016964516 scopus 로고
    • Nonlinear perturbations of quasi-linear control systems
    • J.P. Dauer Nonlinear perturbations of quasi-linear control systems J. Math. Anal. Appl. 54 3 1976 717 725
    • (1976) J. Math. Anal. Appl. , vol.54 , Issue.3 , pp. 717-725
    • Dauer, J.P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.