-
1
-
-
0011110102
-
The role of bottle cells in gastrulation of Xenopus
-
Hardin JD, Keller RE. The role of bottle cells in gastrulation of Xenopus. Development 1988, 103:210-230.
-
(1988)
Development
, vol.103
, pp. 210-230
-
-
Hardin, J.D.1
Keller, R.E.2
-
2
-
-
0038410006
-
How we are shaped: The biomechanics of gastrulation
-
10.1046/j.1432-0436.2003.710301.x, 12694202
-
Keller RE, Davidson LA, Shook D. How we are shaped: The biomechanics of gastrulation. Differentiation 2003, 71:171-205. 10.1046/j.1432-0436.2003.710301.x, 12694202.
-
(2003)
Differentiation
, vol.71
, pp. 171-205
-
-
Keller, R.E.1
Davidson, L.A.2
Shook, D.3
-
3
-
-
0025812705
-
Gastrulation in Drosophila: The formation of the ventral furrow and posterior midgut invaginations
-
Sweeton D, Parks S, Costa M, Wieschaus E. Gastrulation in Drosophila: The formation of the ventral furrow and posterior midgut invaginations. Development 1991, 112:775-789.
-
(1991)
Development
, vol.112
, pp. 775-789
-
-
Sweeton, D.1
Parks, S.2
Costa, M.3
Wieschaus, E.4
-
4
-
-
78649290482
-
Sequential activation of apical and basolateral contractility drives ascidian endoderm invagination
-
10.1016/j.cub.2010.06.075, 20691592
-
Sherrard K, Robin F, Lemaire P, Munro E. Sequential activation of apical and basolateral contractility drives ascidian endoderm invagination. Curr Biol 2010, 20:1499-1510. 10.1016/j.cub.2010.06.075, 20691592.
-
(2010)
Curr Biol
, vol.20
, pp. 1499-1510
-
-
Sherrard, K.1
Robin, F.2
Lemaire, P.3
Munro, E.4
-
5
-
-
0033562772
-
Measurements of mechanical properties of the blastula wall reveal which hypothesized mechanisms of primary invagination are physically plausible in the sea urchin Strongylocentrotus purpuratus
-
10.1006/dbio.1999.9249, 10328917
-
Davidson LA, Keller R, Koehl M. Measurements of mechanical properties of the blastula wall reveal which hypothesized mechanisms of primary invagination are physically plausible in the sea urchin Strongylocentrotus purpuratus. Dev Biol 1999, 209:221-238. 10.1006/dbio.1999.9249, 10328917.
-
(1999)
Dev Biol
, vol.209
, pp. 221-238
-
-
Davidson, L.A.1
Keller, R.2
Koehl, M.3
-
6
-
-
79953749322
-
Self-organizing optic-cup morphogenesis in three-dimensional culture
-
10.1038/nature09941, 21475194
-
Eiraku M, Ishibashi H, Kawada M, Sakakura E, Okuda S, Sekiguchi K, Adachi T, Sasai Y. Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature 2011, 472:51-56. 10.1038/nature09941, 21475194.
-
(2011)
Nature
, vol.472
, pp. 51-56
-
-
Eiraku, M.1
Ishibashi, H.2
Kawada, M.3
Sakakura, E.4
Okuda, S.5
Sekiguchi, K.6
Adachi, T.7
Sasai, Y.8
-
7
-
-
0017666608
-
Cell shape changes and the mechanism of inversion in Volvox
-
10.1083/jcb.75.3.719, 2111588, 925078
-
Viamontes G, Kirk DL. Cell shape changes and the mechanism of inversion in Volvox. J Cell Biol 1977, 75:719-730. 10.1083/jcb.75.3.719, 2111588, 925078.
-
(1977)
J Cell Biol
, vol.75
, pp. 719-730
-
-
Viamontes, G.1
Kirk, D.L.2
-
8
-
-
0038005358
-
A kinesin, InvA, plays an essential role in Volvox morphogenesis
-
10.1016/S0092-8674(03)00431-8, 12809605
-
Nishii I, Ogihara S, Kirk D. A kinesin, InvA, plays an essential role in Volvox morphogenesis. Cell 2003, 113:743-753. 10.1016/S0092-8674(03)00431-8, 12809605.
-
(2003)
Cell
, vol.113
, pp. 743-753
-
-
Nishii, I.1
Ogihara, S.2
Kirk, D.3
-
9
-
-
84859629825
-
How a spherical cell monolayer turns itself inside out: embryonic type B inversion in Volvox globator
-
Hohn S, Hallmann A. How a spherical cell monolayer turns itself inside out: embryonic type B inversion in Volvox globator. BMC Biol 2011, 9:89.
-
(2011)
BMC Biol
, vol.9
, pp. 89
-
-
Hohn, S.1
Hallmann, A.2
-
10
-
-
33749446697
-
Morphogenesis in the family Volvocaceae: Different tactics for turning an embryo right-side out
-
10.1016/j.protis.2006.05.010, 16854623
-
Hallmann A. Morphogenesis in the family Volvocaceae: Different tactics for turning an embryo right-side out. Protist 2006, 157:445-461. 10.1016/j.protis.2006.05.010, 16854623.
-
(2006)
Protist
, vol.157
, pp. 445-461
-
-
Hallmann, A.1
|