메뉴 건너뛰기




Volumn 120, Issue 6, 2011, Pages 1001-1022

Nonlinear genetic-based simulation of soil shear strength parameters

Author keywords

Linear based genetic programming; Prediction; Soil physical properties; Soil shear strength parameters

Indexed keywords

COMPUTER SIMULATION; LEAST SQUARES METHOD; PHYSICAL PROPERTY; PREDICTION; REGRESSION ANALYSIS; SHEAR STRENGTH; SOIL MECHANICS; TRIAXIAL TEST;

EID: 84555170265     PISSN: 02534126     EISSN: 0973774X     Source Type: Journal    
DOI: 10.1007/s12040-011-0119-9     Document Type: Article
Times cited : (26)

References (54)
  • 1
    • 80055054635 scopus 로고    scopus 로고
    • Prediction of principal ground-motion parameters using a hybrid method coupling artificial neural networks and simulated annealing
    • doi: 10.1016/j.compstruc. 2011.08.019
    • Alavi A H and Gandomi A H 2011a Prediction of principal ground-motion parameters using a hybrid method coupling artificial neural networks and simulated annealing; Comput. Struct., doi: 10.1016/j.compstruc. 2011.08.019.
    • (2011) Comput. Struct
    • Alavi, A.H.1    Gandomi, A.H.2
  • 2
    • 79955683058 scopus 로고    scopus 로고
    • A robust data mining approach for formulation of geotechnical engineering systems;
    • Alavi A H and Gandomi A H 2011b A robust data mining approach for formulation of geotechnical engineering systems; Int. J. Comput. Aided Meth. Eng.-Eng. Computations 28(3) 242-274.
    • (2011) Int. J. Comput. Aided Meth. Eng.-Eng. Computations , vol.28 , Issue.3 , pp. 242-274
    • Alavi, A.H.1    Gandomi, A.H.2
  • 3
    • 79151482514 scopus 로고    scopus 로고
    • Prediction of maximum dry density and optimum moisture content of stabilized soil using RBF neural networks
    • Alavi A H, Gandomi A H, Gandomi M and Sadat Hosseini S S 2009 Prediction of maximum dry density and optimum moisture content of stabilized soil using RBF neural networks; The IES J Part A: Civil. Struct. Eng. 2 98-106.
    • (2009) The IES J Part A: Civil. Struct. Eng , vol.2 , pp. 98-106
    • Alavi, A.H.1    Gandomi, A.H.2    Gandomi, M.3    Sadat, H.S.S.4
  • 4
    • 77954209083 scopus 로고    scopus 로고
    • Multi expression programming: A new approach to formulation of soil classification
    • Alavi A H, Gandomi A H, Sahab M G and Gandomi M 2010 Multi expression programming: A new approach to formulation of soil classification; Eng. Comput. 26(2) 111-118.
    • (2010) Eng. Comput , vol.26 , Issue.2 , pp. 111-118
    • Alavi, A.H.1    Gandomi, A.H.2    Sahab, M.G.3    Gandomi, M.4
  • 5
    • 78650232140 scopus 로고    scopus 로고
    • Formulation of flow number of asphalt mixes using a hybrid computational method
    • Alavi A H, Ameri M, Gandomi A H and Mirzahosseini M R 2011 Formulation of flow number of asphalt mixes using a hybrid computational method; Constr. Build. Mater. 25(3)1338-1355.
    • (2011) Constr. Build. Mater , vol.25 , Issue.3 , pp. 1338-1355
    • Alavi, A.H.1    Ameri, M.2    Gandomi, A.H.3    Mirzahosseini, M.R.4
  • 6
    • 85038476152 scopus 로고
    • Introductory soil engineering
    • Nem Chand Jane (Prop), Standard Publishers Distributors, Nai Sarak, Delhi
    • Arora K R 1988 Introductory soil engineering; text book. Nem Chand Jane (Prop), Standard Publishers Distributors, Nai Sarak, Delhi.
    • (1988) Text Book
    • Arora, K.R.1
  • 7
    • 85038456074 scopus 로고    scopus 로고
    • ASTM D 6528 Consolidated undrained direct simple shear testing of cohesive soils
    • ASTM D 6528 Consolidated undrained direct simple shear testing of cohesive soils.
  • 8
    • 85038452229 scopus 로고    scopus 로고
    • ASTM D2850-87 Standard Test Method for Unconsolidated, Undrained Compressive Strength of Cohesive Soils in Triaxial Compression
    • ASTM D2850-87 Standard Test Method for Unconsolidated, Undrained Compressive Strength of Cohesive Soils in Triaxial Compression.
  • 9
    • 85038462773 scopus 로고    scopus 로고
    • ASTM WK3821 New test method for consolidated drained triaxial compression test for soils
    • ASTM WK3821 New test method for consolidated drained triaxial compression test for soils.
  • 10
    • 43149114256 scopus 로고    scopus 로고
    • An application of artificial intelligence for rainfall-runoff modeling
    • Aytek A and Alp M 2008 An application of artificial intelligence for rainfall-runoff modeling; J. Earth Syst. Sci. 117(2)145-155.
    • (2008) J. Earth Syst. Sci , vol.117 , Issue.2 , pp. 145-155
    • Aytek, A.1    Alp, M.2
  • 13
    • 44949162150 scopus 로고    scopus 로고
    • Prediction of compressive and tensile strength of limestone via genetic programming
    • Baykasoglu A, Gullub H, Canakci H and Ozbakir L 2008 Prediction of compressive and tensile strength of limestone via genetic programming; Expert. Syst. Appl. 35(1-2) 111-123.
    • (2008) Expert. Syst. Appl , vol.35 , Issue.1-2 , pp. 111-123
    • Baykasoglu, A.1    Gullub, H.2    Canakci, H.3    Ozbakir, L.4
  • 15
    • 0035247432 scopus 로고    scopus 로고
    • A comparison of linear genetic programming and neural networks in medical data mining;
    • Brameier M and Banzhaf W 2001 A comparison of linear genetic programming and neural networks in medical data mining; IEEE Trans. Evol. Com. 5(1) 17-26.
    • (2001) IEEE Trans. Evol. Com , vol.5 , Issue.1 , pp. 17-26
    • Brameier, M.1    Banzhaf, W.2
  • 17
    • 60349106809 scopus 로고    scopus 로고
    • Modelling damping ratio and shear modulus of sand-mica mixtures using genetic programming
    • Cevik A and Cabalar A F 2009 Modelling damping ratio and shear modulus of sand-mica mixtures using genetic programming; Expert. Syst. Appl. 36(4) 7749-7757.
    • (2009) Expert. Syst. Appl , vol.36 , Issue.4 , pp. 7749-7757
    • Cevik, A.1    Cabalar, A.F.2
  • 22
  • 25
    • 80052923685 scopus 로고    scopus 로고
    • Multi-stage genetic programming: A new strategy to nonlinear system modeling
    • Gandomi A H and Alavi A H 2011 Multi-stage genetic programming: A new strategy to nonlinear system modeling; Inf. Sci. 181(23) 5227-5239.
    • (2011) Inf. Sci , vol.181 , Issue.23 , pp. 5227-5239
    • Gandomi, A.H.1    Alavi, A.H.2
  • 26
    • 67349156132 scopus 로고    scopus 로고
    • A discussion on genetic programming for retrieving missing information in wave records along the west coast of India
    • Gandomi A H, Alavi A H and Sadathosseini S S 2008 A discussion on genetic programming for retrieving missing information in wave records along the west coast of India; Appl. Ocean Res. 30 338-339.
    • (2008) Appl. Ocean Res , vol.30 , pp. 338-339
    • Gandomi, A.H.1    Alavi, A.H.2    Sadathosseini, S.S.3
  • 27
    • 77954757869 scopus 로고    scopus 로고
    • New formulation for compressive strength of CFRP confined concrete cylinders using linear genetic programming; Mater
    • Gandomi A H, Alavi A H and Sahab M G 2010 New formulation for compressive strength of CFRP confined concrete cylinders using linear genetic programming; Mater. Struct. 43(7) 963-983.
    • (2010) Struct , vol.43 , Issue.7 , pp. 963-983
    • Gandomi, A.H.1    Alavi, A.H.2    Sahab, M.G.3
  • 28
    • 79952335644 scopus 로고    scopus 로고
    • Nonlinear genetic-based models for prediction of flow number of asphalt mixtures;
    • Gandomi A H, Alavi A H, Mirzahosseini R and Moqaddas Nezhad F 2011a Nonlinear genetic-based models for prediction of flow number of asphalt mixtures; J. Mater. Civil Eng. ASCE 23(3) 1-18.
    • (2011) J. Mater. Civil Eng. ASCE , vol.23 , Issue.3 , pp. 1-18
    • Gandomi, A.H.1    Alavi, A.H.2    Mirzahosseini, R.3    Moqaddas, N.F.4
  • 29
    • 79953302406 scopus 로고    scopus 로고
    • Nonlinear modeling of shear strength of sfrcb beams using linear genetic programming
    • Gandomi A H, Alavi A H and Yun G J 2011b Nonlinear modeling of shear strength of sfrcb beams using linear genetic programming; Struct. Eng. Mech. 38(1) 1-25.
    • (2011) Struct. Eng. Mech , vol.38 , Issue.1 , pp. 1-25
    • Gandomi, A.H.1    Alavi, A.H.2    Yun, G.J.3
  • 30
    • 70349753109 scopus 로고    scopus 로고
    • Linear Genetic Programming for time-series modelling of daily flow rate
    • Guven A 2009 Linear Genetic Programming for time-series modelling of daily flow rate; J. Earth Syst. Sci. 118(2) 137-146.
    • (2009) J. Earth Syst. Sci , vol.118 , Issue.2 , pp. 137-146
    • Guven, A.1
  • 31
    • 34047131239 scopus 로고    scopus 로고
    • Prediction of pressure fluctuations on stilling basins; Can
    • Guven A, Gunal M and Cevik A 2006 Prediction of pressure fluctuations on stilling basins; Can. J. Civ. Eng. 33(11) 1379-1388.
    • (2006) J. Civ. Eng , vol.33 , Issue.11 , pp. 1379-1388
    • Guven, A.1    Gunal, M.2    Cevik, A.3
  • 32
    • 68349106166 scopus 로고    scopus 로고
    • Genetic programming-based empirical model for daily reference evapotranspiration estimation
    • Guven A, Aytek A, Yuce M I and Aksoy H 2007 Genetic programming-based empirical model for daily reference evapotranspiration estimation; CLEAN-Soil Air Water J. 36(10-11) 905-912.
    • (2007) CLEAN-Soil Air Water J , vol.36 , Issue.10-11 , pp. 905-912
    • Guven, A.1    Aytek, A.2    Yuce, M.I.3    Aksoy, H.4
  • 33
    • 68749103188 scopus 로고    scopus 로고
    • Linear Genetic Programming for prediction of circular pile scour
    • Guven A, Azamathullab H M and Zakaria N A 2009 Linear Genetic Programming for prediction of circular pile scour; Ocean Eng. 36(12-13) 985-991.
    • (2009) Ocean Eng , vol.36 , Issue.12-13 , pp. 985-991
    • Guven, A.1    Azamathullab, H.M.2    Zakaria, N.A.3
  • 34
    • 77950439874 scopus 로고    scopus 로고
    • A radial basis function Neural Network Approach for compressive strength prediction of stabilized soil
    • Heshmati A A R, Alavi A H, Keramati M and Gandomi A H 2009 A radial basis function Neural Network Approach for compressive strength prediction of stabilized soil; Geotech. Spec. Publ. ASCE 191 147-153.
    • (2009) Geotech. Spec. Publ. ASCE , vol.191 , pp. 147-153
    • Heshmati, A.A.R.1    Alavi, A.H.2    Keramati, M.3    Gandomi, A.H.4
  • 35
    • 70249122802 scopus 로고    scopus 로고
    • Applications of artificial intelligence and data mining techniques in soil modelling
    • Javadi A A and Rezania M 2009 Applications of artificial intelligence and data mining techniques in soil modelling; Geomech. Eng. 1(1) 53-74.
    • (2009) Geomech. Eng , vol.1 , Issue.1 , pp. 53-74
    • Javadi, A.A.1    Rezania, M.2
  • 37
    • 67349218791 scopus 로고    scopus 로고
    • A modeling of the angle of shearing resistance of soils using soft computing systems
    • Kayadelen C, Günaydin O, Fener M, Demir A and Özvan A 2009 A modeling of the angle of shearing resistance of soils using soft computing systems; Expert. Syst. Appl. 3611,11814-11,826.
    • (2009) Expert. Syst. Appl , vol.3611 , pp. 11814-11826
    • Kayadelen, C.1    Günaydin, O.2    Fener, M.3    Demir, A.4    Özvan, A.5
  • 38
    • 67349160669 scopus 로고    scopus 로고
    • Prediction of soil shear strength and penetration resistance using some soil properties
    • Korayem A Y, Ismail K M and Sehari S Q 1996 Prediction of soil shear strength and penetration resistance using some soil properties; Mis. J. Agr. Res. 13(4) 119-140.
    • (1996) Mis. J. Agr. Res , vol.13 , Issue.4 , pp. 119-140
    • Korayem, A.Y.1    Ismail, K.M.2    Sehari, S.Q.3
  • 40
    • 0033472761 scopus 로고    scopus 로고
    • Fuzzy Neural Network as instance generator for case-based reasoning system: An example of selection of heat exchange equipment in mixing
    • Kraslawski A, Pedrycz W and Nyström L 1999 Fuzzy Neural Network as instance generator for case-based reasoning system: An example of selection of heat exchange equipment in mixing; Neu. Comput. Appl. 8(2) 106-113.
    • (1999) Neu. Comput. Appl , vol.8 , Issue.2 , pp. 106-113
    • Kraslawski, A.1    Pedrycz, W.2    Nyström, L.3
  • 41
    • 77956956861 scopus 로고    scopus 로고
    • Version 5. Quantitative Micro Software, LLC, Irvine CA
    • Maravall A and Gomez V 2004 Eviews Software; Version 5. Quantitative Micro Software, LLC, Irvine CA.
    • (2004) Eviews Software
    • Maravall, A.1    Gomez, V.2
  • 44
    • 84872299517 scopus 로고    scopus 로고
    • 11 Formulation of soil angle of shearing resistance using a hybrid GP and OLS Mehod
    • in press., doi:10.1007/s00366-011-0242-x
    • Mousavi S M, Alavi A H, Gandomi A H and Mollahasani A 2011 Formulation of soil angle of shearing resistance using a hybrid GP and OLS Mehod; Eng. Comput. in preS.S. doi:10.1007/s00366-011-0242-x
    • (2011) Eng. Comput
    • Mousavi, S.M.1    Alavi, A.H.2    Gandomi, A.H.3    Mollahasani, A.4
  • 46
    • 26444612035 scopus 로고    scopus 로고
    • A comparison of several linear genetic programming techniques
    • Oltean M and Grosan C 2003 A comparison of several linear genetic programming techniques; Complex Syst. 14(4) 1-29.
    • (2003) Complex Syst , vol.14 , Issue.4 , pp. 1-29
    • Oltean, M.1    Grosan, C.2
  • 47
    • 0015341133 scopus 로고
    • Shear strength and energy of soil failure related to density and moisture
    • Panwar J S and Seimens J C 1972 Shear strength and energy of soil failure related to density and moisture; T. ASAE 15 423-427.
    • (1972) T. ASAE , vol.15 , pp. 423-427
    • Panwar, J.S.1    Seimens, J.C.2
  • 48
    • 47249166352 scopus 로고    scopus 로고
    • Genetic programming: An introductory tutorial and a survey of techniques and applications
    • University of Essex, UK
    • Poli R, Langdon W B, McPhee N F and Koza J R 2007 Genetic programming: An introductory tutorial and a survey of techniques and applications; Technical report [CES-475], University of Essex, UK.
    • (2007) Technical Report [CES-475]
    • Poli, R.1    Langdon, W.B.2    McPhee, N.F.3    Koza, J.R.4
  • 50
    • 77955473867 scopus 로고    scopus 로고
    • Recent advances and future challenges for artificial neural systems in geotechnical engineering applications
    • Shahin M A, Jaksa M B and Maier H R 2009 Recent advances and future challenges for artificial neural systems in geotechnical engineering applications; Adv. Artif. Neur. Syst., Article ID 308239.
    • (2009) Adv. Artif. Neur. Syst., Article ID 308239
    • Shahin, M.A.1    Jaksa, M.B.2    Maier, H.R.3
  • 51
    • 84930208606 scopus 로고    scopus 로고
    • Artificial neural network applications in geotechnical engineering
    • Shahin M A, Maier H R and Jaksa M B 2001 Artificial neural network applications in geotechnical engineering; Aus. Geomech. 36(1) 49-62.
    • (2001) Aus. Geomech , vol.36 , Issue.1 , pp. 49-62
    • Shahin, M.A.1    Maier, H.R.2    Jaksa, M.B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.