메뉴 건너뛰기




Volumn , Issue , 2011, Pages 1153-1156

Ensemble multi-instance multi-label learning approach for video annotation task

Author keywords

Ensemble methods; Multi instance multi label learning; Video annotation

Indexed keywords

AUTOMATIC VIDEO ANNOTATION; CLASS IMBALANCE; DATA SETS; ENSEMBLE METHODS; FEATURE VECTORS; LEARNING APPROACH; LEARNING PROBLEM; MULTI-LABEL; NATURAL STRUCTURES; STATE-OF-THE-ART METHODS; TEMPORAL CONSISTENCY; TRECVID; VIDEO ANNOTATIONS; VIDEO CLIPS; VIDEO DATA; VIDEO INDEXING;

EID: 84455205895     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2072298.2071962     Document Type: Conference Paper
Times cited : (40)

References (27)
  • 1
    • 13444299012 scopus 로고    scopus 로고
    • IBM research TRECVID-2003 video retrieval system
    • A. Amir, M. Berg, and S.-F. Chang. IBM research TRECVID-2003 video retrieval system. In TREVID, 2003.
    • (2003) TREVID
    • Amir, A.1    Berg, M.2    Chang, S.-F.3
  • 2
    • 0030649484 scopus 로고    scopus 로고
    • Solving the multiple-instance problem with axis-parallel rectangles
    • T. G. Dietterich, R. H. Lathrop, and T. Lozano-Pérez. Solving the multiple-instance problem with axis-parallel rectangles. Artificial Intelligence, 89(1-2):31-71, 1997.
    • (1997) Artificial Intelligence , vol.89 , Issue.1-2 , pp. 31-71
    • Dietterich, T.G.1    Lathrop, R.H.2    Lozano-Pérez, T.3
  • 4
    • 84885670794 scopus 로고    scopus 로고
    • Hidden markov models for automatic annotation and content-based retrieval of images and video
    • A. Ghoshal, P. Ircing, and S. Khudanpur. Hidden markov models for automatic annotation and content-based retrieval of images and video. In SIGIR, 544-551, 2005.
    • (2005) SIGIR , pp. 544-551
    • Ghoshal, A.1    Ircing, P.2    Khudanpur, S.3
  • 5
    • 34247576789 scopus 로고    scopus 로고
    • The pyramid match kernel: Efficient learning with sets of features
    • K. Grauman and T. Darrell. The pyramid match kernel: Efficient learning with sets of features. Journal of Machine Learning Research, 8:725-760, 2007.
    • (2007) Journal of Machine Learning Research , vol.8 , pp. 725-760
    • Grauman, K.1    Darrell, T.2
  • 6
    • 57849153624 scopus 로고    scopus 로고
    • Multi-layer multi-instance learning for video concept detection
    • Z. Gu, T. Mei, X.-S. Hua, J. Tang, and X. Wu. Multi-layer multi-instance learning for video concept detection. IEEE Transactions on Multimedia, 10(8):1605-1616, 2008.
    • (2008) IEEE Transactions on Multimedia , vol.10 , Issue.8 , pp. 1605-1616
    • Gu, Z.1    Mei, T.2    Hua, X.-S.3    Tang, J.4    Wu, X.5
  • 7
    • 70450164149 scopus 로고    scopus 로고
    • Learning a distance metric from multi-instance multi-label data
    • R. Jin, S. Wang, and Z.-H. Zhou. Learning a distance metric from multi-instance multi-label data. In CVPR, 896-902, 2009.
    • (2009) CVPR , pp. 896-902
    • Jin, R.1    Wang, S.2    Zhou, Z.-H.3
  • 8
    • 77953193733 scopus 로고    scopus 로고
    • Drosophila gene expression pattern annotation through multi-instance multi-label learning
    • Y.-X. Li, S. Ji, J. Ye, and Z.-H. Zhou. Drosophila gene expression pattern annotation through multi-instance multi-label learning. In IJCAI, 1445-1450, 2009.
    • (2009) IJCAI , pp. 1445-1450
    • Li, Y.-X.1    Ji, S.2    Ye, J.3    Zhou, Z.-H.4
  • 11
    • 33646775339 scopus 로고    scopus 로고
    • A generalized multiple instance learning algorithm for large scale modeling of multimedia semantics
    • M. Naphade and J. Smith. A generalized multiple instance learning algorithm for large scale modeling of multimedia semantics. In ICASSP, 341-344, 2005.
    • (2005) ICASSP , pp. 341-344
    • Naphade, M.1    Smith, J.2
  • 13
    • 79951766505 scopus 로고    scopus 로고
    • A new SVM approach to multi-instance multi-label learning
    • N. Nguyen. A new SVM approach to multi-instance multi-label learning. In ICDM, 384-392, 2010.
    • (2010) ICDM , pp. 384-392
    • Nguyen, N.1
  • 15
    • 84908571977 scopus 로고    scopus 로고
    • Multimedia semantic indexing using model vectors
    • J. R. Smith, M. Naphade, and A. Natsev. Multimedia semantic indexing using model vectors. In ICME, 445-448, 2003.
    • (2003) ICME , pp. 445-448
    • Smith, J.R.1    Naphade, M.2    Natsev, A.3
  • 16
    • 34547172608 scopus 로고    scopus 로고
    • The challenge problem for automated detection of 101 semantic concepts in multimedia
    • C. G. M. Snoek, M. Worring, J. C. van Gemert, J.-M. Geusebroek, and A. W. M. Smeulders. The challenge problem for automated detection of 101 semantic concepts in multimedia. In MM, 421-430, 2006.
    • (2006) MM , pp. 421-430
    • Snoek, C.G.M.1    Worring, M.2    Van Gemert, J.C.3    Geusebroek, J.-M.4    Smeulders, A.W.M.5
  • 17
    • 48149088634 scopus 로고    scopus 로고
    • Temporally consistent gaussian random field for video semantic analysis
    • J. Tang, X.-S. Hua, T. Mei, G.-J. Qi, S. Li, and X. Wu. Temporally consistent gaussian random field for video semantic analysis. In ICIP, 525-528, 2007.
    • (2007) ICIP , pp. 525-528
    • Tang, J.1    Hua, X.-S.2    Mei, T.3    Qi, G.-J.4    Li, S.5    Wu, X.6
  • 19
    • 34547468211 scopus 로고    scopus 로고
    • Exploring temporal consistency for video analysis and retrieval
    • J. Yang and A. G. Hauptmann. Exploring temporal consistency for video analysis and retrieval. In MIR, 33-42, 2006.
    • (2006) MIR , pp. 33-42
    • Yang, J.1    Hauptmann, A.G.2
  • 20
    • 84863338235 scopus 로고    scopus 로고
    • Dirichlet-bernoulli alignment: A generative model for multi-class multi-label multi-instance corpora
    • S.-H. Yang, H. Zha, and B.-G. Hu. Dirichlet-bernoulli alignment: A generative model for multi-class multi-label multi-instance corpora. In NIPS 23, 2143-2150, 2009.
    • (2009) NIPS , vol.23 , pp. 2143-2150
    • Yang, S.-H.1    Zha, H.2    Hu, B.-G.3
  • 21
    • 84905169813 scopus 로고    scopus 로고
    • THU and ICRC at TRECVID
    • J. Yuan, Z. Guo, and L. Lv, et al. THU and ICRC at TRECVID. In TRECVID, 2007.
    • (2007) TRECVID
    • Yuan, J.1    Guo, Z.2    Lv, L.3
  • 22
    • 51949083216 scopus 로고    scopus 로고
    • Joint multi-label multi-instance learning for image classification
    • Z.-J. Zha, X.-S. Hua, T. Mei, J. Wang, G.-J. Qi, and Z. Wang. Joint multi-label multi-instance learning for image classification. In CVPR, 1-8, 2008.
    • (2008) CVPR , pp. 1-8
    • Zha, Z.-J.1    Hua, X.-S.2    Mei, T.3    Wang, J.4    Qi, G.-J.5    Wang, Z.6
  • 23
    • 67149122177 scopus 로고    scopus 로고
    • M3MIML: A maximum margin method for multi-instance multi-label learning
    • M.-L. Zhang and Z.-H. Zhou. M3MIML: A maximum margin method for multi-instance multi-label learning. In ICDM, 688-697, 2008.
    • (2008) ICDM , pp. 688-697
    • Zhang, M.-L.1    Zhou, Z.-H.2
  • 24
    • 70350346030 scopus 로고    scopus 로고
    • Ensemble learning
    • S. Z. Li, editor, Springer
    • Z.-H. Zhou. Ensemble learning. In S. Z. Li, editor, Encyclopedia of Biometrics, pages 270-273. Springer, 2009.
    • (2009) Encyclopedia of Biometrics , pp. 270-273
    • Zhou, Z.-H.1
  • 25
    • 71149085943 scopus 로고    scopus 로고
    • Multi-instance learning by treating instances as non-i.i.d. Samples
    • Z.-H. Zhou, Y.-Y. Sun, and Y.-F. Li. Multi-instance learning by treating instances as non-i.i.d. samples. In ICML, 1249-1256, 2009.
    • (2009) ICML , pp. 1249-1256
    • Zhou, Z.-H.1    Sun, Y.-Y.2    Li, Y.-F.3
  • 26
    • 84864028262 scopus 로고    scopus 로고
    • Multi-instance multi-label learning with application to scene classification
    • Z.-H. Zhou and M.-L. Zhang. Multi-instance multi-label learning with application to scene classification. In NIPS 19, 1609-1616, 2007.
    • (2007) NIPS , vol.19 , pp. 1609-1616
    • Zhou, Z.-H.1    Zhang, M.-L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.