메뉴 건너뛰기




Volumn , Issue , 2005, Pages 615-616

Predicting query difficulty on the web by learning visual clues

Author keywords

query difficulty; web search

Indexed keywords

DOCUMENT REPRESENTATION; ENGINE PERFORMANCE; MAXIMUM CORRELATIONS; QUERY DIFFICULTY; RELEVANCE JUDGMENT; RETRIEVAL EFFECTIVENESS; SUPERVISED MACHINE LEARNING; WEB SEARCHES;

EID: 84455201514     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1076034.1076155     Document Type: Conference Paper
Times cited : (12)

References (3)
  • 1
    • 84885582103 scopus 로고    scopus 로고
    • A Framework for Determining Necessary Query Set Sizes to Evaluate Web Search Effectiveness
    • E. C. Jensen, et al. A Framework for Determining Necessary Query Set Sizes to Evaluate Web Search Effectiveness. In Proceedings of WWW'05.
    • Proceedings of WWW'05
    • Jensen, E.C.1
  • 3
    • 84874230243 scopus 로고    scopus 로고
    • Inferring Query Performance Using Pre-Retrieval Predictors
    • B. He and I. Ounis. Inferring Query Performance Using Pre-Retrieval Predictors. In Proceedings of SPIRE'04.
    • Proceedings of SPIRE'04
    • He, B.1    Ounis, I.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.