메뉴 건너뛰기




Volumn 33, Issue , 2000, Pages 140-147

The impact of data compression and neighborhood information on the classification accuracy of artificial neural networks

Author keywords

Neural networks; Principal component analysis; Thematic classification

Indexed keywords

CLASSIFICATION (OF INFORMATION); DATA COMPRESSION; MAPPING; MAPS; MATHEMATICAL TRANSFORMATIONS; NEURAL NETWORKS; REMOTE SENSING;

EID: 84455196072     PISSN: 16821750     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (1)

References (7)
  • 2
    • 0003588753 scopus 로고
    • Erdas Inc., Atlanta
    • Erdas 1994, Erdas Field Guide, Erdas Inc., Atlanta
    • (1994) Erdas Field Guide
  • 5
    • 0141908066 scopus 로고    scopus 로고
    • Matlab MathWorks Inc., Natick
    • Matlab 1998, Using Matlab Version 5.2, MathWorks Inc., Natick
    • (1998) Using Matlab Version 5.2
  • 6
    • 0029341018 scopus 로고
    • A detailed comparison of backpropagation neural network and maximum likelihood classifiers for urban land use classification
    • Paola, J.D., Schowengerdt, R.A., 1995. A detailed comparison of backpropagation neural network and maximum likelihood classifiers for urban land use classification, TGARS, Vol. 33, No. 4, pp. 981-996
    • (1995) TGARS , vol.33 , Issue.4 , pp. 981-996
    • Paola, J.D.1    Schowengerdt, R.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.