메뉴 건너뛰기




Volumn 99, Issue , 2012, Pages 178-182

Hybrid data mining-regression for infrastructure risk assessment based on zero-inflated data

Author keywords

Classification tree; Regression; Risk assessment; Zero inflated

Indexed keywords

CLASSIFICATION TREES; COMPLEX DATA; DATA SETS; DATA-DRIVEN ANALYSIS; HYBRID CLASSIFICATION; INFRASTRUCTURE SYSTEMS; NEGATIVE BINOMIAL REGRESSION MODEL; PERFORMANCE DATA; POWER OUTAGE; PREDICTIVE ACCURACY; REGRESSION; SIMULATED DATASETS; STATISTICAL MODELS; THRESHOLD EFFECT; ZERO-INFLATED;

EID: 84455167511     PISSN: 09518320     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ress.2011.10.012     Document Type: Article
Times cited : (84)

References (15)
  • 3
    • 70349304185 scopus 로고    scopus 로고
    • Improving the predictive accuracy of Hurricane power outage forecasts using generalized additive models
    • S. Han, S. Guikema, and S. Quiring Improving the predictive accuracy of Hurricane power outage forecasts using generalized additive models Risk Analysis 29 10 2009 1443 1453
    • (2009) Risk Analysis , vol.29 , Issue.10 , pp. 1443-1453
    • Han, S.1    Guikema, S.2    Quiring, S.3
  • 4
    • 39849095134 scopus 로고    scopus 로고
    • A flexible count data regression model for risk analysis
    • DOI 10.1111/j.1539-6924.2008.01014.x
    • S. Guikema, and J. Coffelt A flexible count data regression model for risk analysis Risk Analysis 28 1 2008 213 223 (Pubitemid 351315514)
    • (2008) Risk Analysis , vol.28 , Issue.1 , pp. 213-223
    • Guikema, S.D.1    Goffelt, J.P.2
  • 5
    • 29744453124 scopus 로고    scopus 로고
    • An alternative perspective on the mixture estimation problem
    • DOI 10.1016/j.ress.2005.02.005, PII S095183200500058X
    • M. Nagode, and M. Fajdiga An alternative perspective on the mixture estimation problem Reliability Engineering and System Safety 91 4 2006 388 397 (Pubitemid 43031340)
    • (2006) Reliability Engineering and System Safety , vol.91 , Issue.4 , pp. 388-397
    • Nagode, M.1    Fajdiga, M.2
  • 6
    • 2142827114 scopus 로고    scopus 로고
    • Reliability approximation using finite Weibull mixture distributions
    • T. Buar, M. Nagode, and M. Fajdiga Reliability approximation using finite Weibull mixture distributions Reliability Engineering and System Safety 84 3 2004 241 251
    • (2004) Reliability Engineering and System Safety , vol.84 , Issue.3 , pp. 241-251
    • Buar, T.1    Nagode, M.2    Fajdiga, M.3
  • 7
    • 73749084830 scopus 로고    scopus 로고
    • Single versus mixture Weibull distributions for nonparametric satellite reliability
    • J. Castet, and J. Saleh Single versus mixture Weibull distributions for nonparametric satellite reliability Reliability Engineering and System Safety 95 3 2010 295 300
    • (2010) Reliability Engineering and System Safety , vol.95 , Issue.3 , pp. 295-300
    • Castet, J.1    Saleh, J.2
  • 10
    • 78649769396 scopus 로고    scopus 로고
    • Prestorm estimation of Hurricane damage to electric power distribution systems
    • S. Guikema, S. Quiring, and S. Han Prestorm estimation of Hurricane damage to electric power distribution systems Risk Analysis (12) 2010 1744 1752
    • (2010) Risk Analysis , vol.12 , pp. 1744-1752
    • Guikema, S.1    Quiring, S.2    Han, S.3
  • 11
    • 36348978159 scopus 로고    scopus 로고
    • Statistical forecasting of electric power restoration times in hurricanes and ice storms
    • DOI 10.1109/TPWRS.2007.907587
    • H. Liu, R. Davidson, and T. Apanasovich Statistical forecasting of electric power restoration times in hurricanes and ice storms IEEE Transactions on Power Systems 22 4 2007 2270 2279 (Pubitemid 350142029)
    • (2007) IEEE Transactions on Power Systems , vol.22 , Issue.4 , pp. 2270-2279
    • Liu, H.1    Davidson, R.A.2    Apanasovich, T.V.3
  • 12
    • 81855185615 scopus 로고    scopus 로고
    • Comparison and validation of statistical methods for predicting power outage durations in the event of hurricanes
    • Nateghi R, Guikema S, Quiring S. Comparison and validation of statistical methods for predicting power outage durations in the event of hurricanes. Risk Analysis, doi:10.1111/j.1539-6924.2011.01618.x.
    • Risk Analysis
    • Nateghi, R.1    Guikema, S.2    Quiring, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.