-
1
-
-
49449100276
-
4 variational approach to remove multiplicative noise
-
G. AUBERT AND J. F. AUJOL, 4 variational approach to remove multiplicative noise, SIAM J. Appl. Math.. 68 (2008), pp. 925-946.
-
(2008)
SIAM J. Appl. Math.
, vol.68
, pp. 925-946
-
-
Aubert, G.1
Aujol, J.F.2
-
2
-
-
67349157591
-
Total variation-penalized Poisson likelihood estimation for ill-posed prob-lems
-
J. BARDSLEY AND A. LUTTMAN, Total variation-penalized Poisson likelihood estimation for ill-posed prob-lems , Adv. Comput. Math., 31 (2009), pp. 35-59.
-
(2009)
Adv. Comput. Math.
, vol.31
, pp. 35-59
-
-
Bardsley, J.1
Luttman, A.2
-
3
-
-
41549168778
-
Convergence rates of general regularization methods for statistical inverse problems and applications
-
N. BlSSANTZ, T. HOHAGE, A. MUNK, AND F. RUYMGAART, Convergence rates of general regularization methods for statistical inverse problems and applications, SIAM J. Numer. Anal., 45 (2007), pp. 2610-2636.
-
(2007)
SIAM J. Numer. Anal.
, vol.45
, pp. 2610-2636
-
-
Blssantz, N.1
Hohage, T.2
Munk, A.3
Ruymgaart, F.4
-
4
-
-
49949144765
-
The relaxation method for finding the common point of convex sets and its application to the solution of problems in convex programming
-
L. M. BREGMAN, The relaxation method for finding the common point of convex sets and its application to the solution of problems in convex programming, Comput. Math. Math. Phys., 7 (1967), pp. 200-217.
-
(1967)
Comput. Math. Math. Phys.
, vol.7
, pp. 200-217
-
-
Bregman, L.M.1
-
5
-
-
69049109069
-
Bregman-EM-TV methods with application to optical nanoscopy
-
X.-C. Tai, K. Merken, M. Lysaker, and K.-A. Lie, eds., Lecture Notes in Comput. Sci. Springer, Berlin
-
C. BRUNE, A. SAWATZKY, AND M. BURGER, Bregman-EM-TV methods with application to optical nanoscopy, Proceedings of the 2nd International Conference on Scale Space and Variational Methods in Computer Vision, X.-C. Tai, K. Merken, M. Lysaker, and K.-A. Lie, eds., Lecture Notes in Comput. Sci., Vol. 5567, Springer, Berlin, 2009, pp. 235-246.
-
(2009)
Proceedings of the 2nd International Conference on Scale Space and Variational Methods in Computer Vision
, vol.5567
, pp. 235-246
-
-
Brune, C.1
Sawatzky, A.2
Burger, M.3
-
6
-
-
85121572269
-
Nonlinear inverse scale space methods
-
M. BURGER, G. GlLBOA, S. OSHER, AND J. Xu, Nonlinear inverse scale space methods, Commun. Math. Sci., 4 (2006), pp. 179-212.
-
(2006)
Commun. Math. Sci.
, vol.4
, pp. 179-212
-
-
Burger, M.1
Gllboa, G.2
Osher, S.3
Xu, J.4
-
7
-
-
84904732030
-
Cahn-Hilliard inpainting and a generalization to grayvalue images
-
M. BURGER, L. He, AND C. SCHONLIEB, Cahn-Hilliard inpainting and a generalization to grayvalue images, SIAM J. Imaging Sci., 2 (2009), pp. 1129-1167.
-
(2009)
SIAM J. Imaging Sci.
, vol.2
, pp. 1129-1167
-
-
Burger, M.1
He, L.2
Schonlieb, C.3
-
8
-
-
6444243748
-
Convergence rates of convex variational regularization
-
M. BURGER AND S. OSHER, Convergence rates of convex variational regularization, Inverse Problems, 20 (2004), pp. 1411-1421.
-
(2004)
Inverse Problems
, vol.20
, pp. 1411-1421
-
-
Burger, M.1
Osher, S.2
-
9
-
-
36549078210
-
Error estimation for Bregman iterations and inverse scale space methods in image restoration
-
DOI 10.1007/s00607-007-0245-z, Special Issue on Industrial Geometry
-
M. BURGER, E. RESMERITA, AND L. He, Error estimation forBregman iterations and inverse scale space methods, Computing, 81 (2007), pp. 109-135. (Pubitemid 350178349)
-
(2007)
Computing (Vienna/New York)
, vol.81
, Issue.2-3
, pp. 109-135
-
-
Burger, M.1
Resmerita, E.2
He, L.3
-
10
-
-
27744554422
-
Salt-and-pepper noise removal by median-type noise detectors and detail-preserving regularization
-
DOI 10.1109/TIP.2005.852196
-
R. CHAN, C. Ho, AND M. NIKOLOVA, Salt-and-pepper noise removal by median-type noise detector and detail-preserving regularization, IEEE Trans, on Image Process., 14 (2005), pp. 1479-1485. (Pubitemid 41623079)
-
(2005)
IEEE Transactions on Image Processing
, vol.14
, Issue.10
, pp. 1479-1485
-
-
Chan, R.H.1
Ho, C.-W.2
Nikolova, M.3
-
11
-
-
27844461945
-
1 function approximation
-
DOI 10.1137/040604297
-
T. F. CHAN AND S. ESEDOGLU, 4 specte of total variation regularized function approximation, SIAM J. Appl. Math., 65 (2005), pp. 1817-1837. (Pubitemid 41639797)
-
(2005)
SIAM Journal on Applied Mathematics
, vol.65
, Issue.5
, pp. 1817-1837
-
-
Chan, T.F.1
Esedoglu, S.2
-
14
-
-
13744252042
-
Convergence rates in the Prokhorov metric for assessing uncertainty in ill-posed problems
-
DOI 10.1088/0266-5611/21/1/024
-
H. W. ENGL, A. HOFINGER, AND S. KlNDERMANN, Convergence rates in theProkhorov metric for assessing uncertainty in ill-posed problems, Inverse Problems, 21 (2005), pp. 399-412. (Pubitemid 40238434)
-
(2005)
Inverse Problems
, vol.21
, Issue.1
, pp. 399-412
-
-
Engl, H.W.1
Hofinger, A.2
Kindermann, S.3
-
15
-
-
36749089116
-
Convergence rates for the Bayesian approach to linear inverse problems
-
A. HOFINGER AND H. K. PlKKARAINEN, Convergence rates for the Bayesian approach to linear inverse problems, Inverse Problems, 23 (2006), pp. 2469-2484.
-
(2006)
Inverse Problems
, vol.23
, pp. 2469-2484
-
-
Hofinger, A.1
Plkkarainen, H.K.2
-
16
-
-
61349093573
-
Convergence rates for linear inverse problems in the presence of an additive normal noise
-
-, Convergence rates for linear inverse problems in the presence of an additive normal noise, Stoch. Anal. Appl., 27 (2009), pp. 240-257.
-
(2009)
Stoch. Anal. Appl.
, vol.27
, pp. 240-257
-
-
-
17
-
-
34249721452
-
A convergence rates result for Tikhonov regularization in Banach spaces with non-smooth operators
-
DOI 10.1088/0266-5611/23/3/009, PII S026656110738129X, 009
-
B. HOFMANN, B. KALTENBACHER, C. POSCHL, AND O. SCHERZER, A convergence rates result for Tikhonov regularization in Banach spaces with non-smooth operators, Inverse Problems, 23 (2007), pp. 987-1010. (Pubitemid 46838837)
-
(2007)
Inverse Problems
, vol.23
, Issue.3
, pp. 987-1010
-
-
Hofmann, B.1
Kaltenbacher, B.2
Poschl, C.3
Scherzer, O.4
-
19
-
-
84907779428
-
A new total variation method for multiplicative noise removal
-
Y. M. HUANG, M. K. Ng, AND Y. W. Wen, A new total variation method for multiplicative noise removal, SIAM J. Imaging Sci., 2 (2009), pp. 20-40.
-
(2009)
SIAM J. Imaging Sci.
, vol.2
, pp. 20-40
-
-
Huang, Y.M.1
Ng, M.K.2
Wen, Y.W.3
-
20
-
-
0031190440
-
Proximal minimization methods with generalized Bregman functions
-
K. C. KlWIEL, Proximal minimization methods with generalized Bregman functions, SIAM J. Control Optim., 35(1997), pp. 1142-1168.
-
(1997)
SIAM J. Control Optim.
, vol.35
, pp. 1142-1168
-
-
Klwiel, K.C.1
-
21
-
-
51749124719
-
Convergence rates and source conditions for Tikhonov regularization with sparsity constraints
-
D. A. LORENZ, Convergence rates and source conditions for Tikhonov regularization with sparsity constraints, J. Inverse Ill-Posed Probl., 16 (2008), pp. 463-478.
-
(2008)
J. Inverse Ill-Posed Probl.
, vol.16
, pp. 463-478
-
-
Lorenz, D.A.1
-
22
-
-
54749132261
-
Optimal convergence rates for Tikhonov regularization in Besov scales
-
D. A. LORENZ AND D. TREDE, Optimal convergence rates for Tikhonov regularization in Besov scales. Inverse Problems, 24 (2008), 055010.
-
(2008)
Inverse Problems
, vol.24
, pp. 055010
-
-
Lorenz, D.A.1
Trede, D.2
-
25
-
-
0004865563
-
On converse and saturation results for tikhonov regulartzatton of linear ill-posed problems
-
A. NEUBAUER, On converse and saturation results for Tikhonov regularization of linear ill-posed problems, SIAM J. Numer. Anal., 34 (1997), pp. 517-527. (Pubitemid 127463077)
-
(1997)
SIAM Journal on Numerical Analysis
, vol.34
, Issue.2
, pp. 517-527
-
-
Neubauer, A.1
-
26
-
-
19844370110
-
An iterative regularization method for total variation-based image restoration
-
DOI 10.1137/040605412
-
S. OSHER, M. BURGER, D. GOLDFARB, J. Xu, AND W. Yin, An iterative regularization method for total variation-based image restoration, Multiscale Model. Simul., 4 (2005), pp. 460-489. (Pubitemid 43885248)
-
(2005)
Multiscale Modeling and Simulation
, vol.4
, Issue.2
, pp. 460-489
-
-
Osher, S.1
Burger, M.2
Goldfarb, D.3
Xu, J.4
Yin, W.5
-
27
-
-
77951980928
-
-
PhD thesis, Department of Mathematics, Computer Science, and Physics, Leopold-Franzens-Universitat Innsbruck
-
C. POSCHL, Tikhonov regularization with general residual term, PhD thesis, Department of Mathematics, Computer Science, and Physics, Leopold-Franzens-Universitat Innsbruck, 2008.
-
(2008)
Tikhonov Regularization with General Residual Term
-
-
Poschl, C.1
-
28
-
-
33744766866
-
Error estimates for non-quadratic regularization and the relation to enhancement
-
DOI 10.1088/0266-5611/22/3/004, PII S0266561106147826
-
E. RESMERITA AND O. SCHERZER, Error estimates for non-quadratic regularization and the relation to enhancing, Inverse Problems, 22 (2006), pp. 801-814. (Pubitemid 43821177)
-
(2006)
Inverse Problems
, vol.22
, Issue.3
, pp. 801-814
-
-
Resmerita, E.1
Scherzer, O.2
-
29
-
-
44049111982
-
Nonlinear total variation based noise removal algorithms
-
L. RUDIN, S. OSHER, AND E. FATEMI, Nonlinear total variation based noise removal algorithms, Physica D, 60 (1992), pp. 259-268.
-
(1992)
Physica D
, vol.60
, pp. 259-268
-
-
Rudin, L.1
Osher, S.2
Fatemi, E.3
-
30
-
-
84907734262
-
4 nonlinear inverse scale space method for a convex multiplicative noise model
-
J. SHI AND S. OSHER, 4 nonlinear inverse scale space method for a convex multiplicative noise model, SIAM J. Imaging Sci., 1 (2008), pp. 294-321.
-
(2008)
SIAM J. Imaging Sci.
, vol.1
, pp. 294-321
-
-
Shi, J.1
Osher, S.2
-
31
-
-
79951763545
-
Augmented Lagrangian method for total variation restoration with non-quadratic fidelity
-
C. Wu, J. ZHANG, AND X. TAI, Augmented Lagrangian method for total variation restoration with non-quadratic fidelity, Inverse Problems and Imaging, 5 (2011), pp. 237-261.
-
(2011)
Inverse Problems and Imaging
, vol.5
, pp. 237-261
-
-
Wu, C.1
Zhang, J.2
Tai, X.3
|