메뉴 건너뛰기




Volumn 79, Issue , 2012, Pages 115-124

Sparse and silent coding in neural circuits

Author keywords

1 Norm; Cross entropy method; Sparse coding

Indexed keywords

APPROXIMATE SOLUTION; CENTRALIZED ALGORITHMS; COMBINED METHOD; CROSS-ENTROPY METHOD; GREEDY METHOD; HARD PROBLEMS; ITERATIVE SOLUTIONS; NEURAL CIRCUITS; NEURAL INFORMATION PROCESSING; NON-ZERO COEFFICIENTS; OPTIMAL SOLUTIONS; OVER-COMPLETE; PRIORI KNOWLEDGE; PROBLEM SIZE; SPARSE CODING; SPARSE FORMS; SUBOPTIMAL SOLUTION;

EID: 83955161106     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2011.10.017     Document Type: Article
Times cited : (4)

References (65)
  • 1
    • 76749107542 scopus 로고    scopus 로고
    • Online learning for matrix factorization and sparse coding
    • Mairal J., Bach F., Ponce J., Sapiro G. Online learning for matrix factorization and sparse coding. J. Mach. Learn. Res. 2010, 11:19-60.
    • (2010) J. Mach. Learn. Res. , vol.11 , pp. 19-60
    • Mairal, J.1    Bach, F.2    Ponce, J.3    Sapiro, G.4
  • 2
    • 0040422903 scopus 로고
    • Learning factorial codes by predictability minimization
    • Schmidhuber J. Learning factorial codes by predictability minimization. Neural Comput. 1992, 4:863-879.
    • (1992) Neural Comput. , vol.4 , pp. 863-879
    • Schmidhuber, J.1
  • 3
    • 0141853951 scopus 로고    scopus 로고
    • The nonlinear statistics of high-contrast patches in natural images
    • Lee A.B., Pedersen K.S., Mumford D.B. The nonlinear statistics of high-contrast patches in natural images. Int. J. Comput. Vision 2003, 54:83-103.
    • (2003) Int. J. Comput. Vision , vol.54 , pp. 83-103
    • Lee, A.B.1    Pedersen, K.S.2    Mumford, D.B.3
  • 4
    • 0030779611 scopus 로고    scopus 로고
    • Sparse coding with an overcomplete basis set: a strategy employed by V1?
    • Olshausen B.A., Field D.J. Sparse coding with an overcomplete basis set: a strategy employed by V1?. Vision Res. 1997, 37:3311-3325.
    • (1997) Vision Res. , vol.37 , pp. 3311-3325
    • Olshausen, B.A.1    Field, D.J.2
  • 6
    • 33644513420 scopus 로고    scopus 로고
    • Efficient auditory coding
    • Smith E.C., Lewicki M.S. Efficient auditory coding. Nature 2006, 439:978-982.
    • (2006) Nature , vol.439 , pp. 978-982
    • Smith, E.C.1    Lewicki, M.S.2
  • 7
    • 0002014402 scopus 로고
    • Possible principles underlying the transformation of sensory messages
    • MIT Press, Cambridge, MA, W.A. Rosenblith (Ed.)
    • Barlow H.B. Possible principles underlying the transformation of sensory messages. Sensory Communication 1961, 217-234. MIT Press, Cambridge, MA. W.A. Rosenblith (Ed.).
    • (1961) Sensory Communication , pp. 217-234
    • Barlow, H.B.1
  • 8
    • 0000929221 scopus 로고
    • What is the goal of sensory coding
    • Field D.J. What is the goal of sensory coding. Neural Comput. 1994, 6:559-601.
    • (1994) Neural Comput. , vol.6 , pp. 559-601
    • Field, D.J.1
  • 9
    • 0002086574 scopus 로고
    • Neuronal architectures for pattern-theoretic problems
    • MIT Press, C. Koch, J.L. Davis (Eds.)
    • Mumford D. Neuronal architectures for pattern-theoretic problems. Large Scale Neuronal Theories of the Brain 1994, 125-152. MIT Press. C. Koch, J.L. Davis (Eds.).
    • (1994) Large Scale Neuronal Theories of the Brain , pp. 125-152
    • Mumford, D.1
  • 10
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • Lee D.D., Seung H.S. Learning the parts of objects by non-negative matrix factorization. Nature 1999, 401:788-791.
    • (1999) Nature , vol.401 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 11
    • 0005906675 scopus 로고    scopus 로고
    • Sparse codes and spikes
    • MIT Press, R.P.N. Rao, B.A. Olshausen, M.S. Lewicki (Eds.)
    • Olshausen B.A. Sparse codes and spikes. Probabilistic Models of the Brain 2002, 257-272. MIT Press. R.P.N. Rao, B.A. Olshausen, M.S. Lewicki (Eds.).
    • (2002) Probabilistic Models of the Brain , pp. 257-272
    • Olshausen, B.A.1
  • 12
    • 0036546655 scopus 로고    scopus 로고
    • Natural stimulation of the nonclassical receptive field increases information transmission efficiency in v1
    • Vinje W., Gallant J. Natural stimulation of the nonclassical receptive field increases information transmission efficiency in v1. J. Neurosci. 2002, 22:2904-2915.
    • (2002) J. Neurosci. , vol.22 , pp. 2904-2915
    • Vinje, W.1    Gallant, J.2
  • 15
    • 0029291966 scopus 로고
    • Sparse approximate solutions to linear systems
    • Natarajan B. Sparse approximate solutions to linear systems. SIAM J. Comput. 1995, 24:227-234.
    • (1995) SIAM J. Comput. , vol.24 , pp. 227-234
    • Natarajan, B.1
  • 16
    • 65749110333 scopus 로고    scopus 로고
    • Subspace pursuit for compressive sensing signal reconstruction
    • Dai W., Milenkovic O. Subspace pursuit for compressive sensing signal reconstruction. IEEE Trans. Inf. Theory 2009, 55:2230-2249.
    • (2009) IEEE Trans. Inf. Theory , vol.55 , pp. 2230-2249
    • Dai, W.1    Milenkovic, O.2
  • 18
    • 56549104376 scopus 로고    scopus 로고
    • Spike-based cross-entropy method for reconstruction
    • Lorincz A., Palotai Z., Szirtes G. Spike-based cross-entropy method for reconstruction. Neurocomputing 2008, 71:3635-3639.
    • (2008) Neurocomputing , vol.71 , pp. 3635-3639
    • Lorincz, A.1    Palotai, Z.2    Szirtes, G.3
  • 19
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani R. Regression shrinkage and selection via the lasso. J. R. Statist. Soc. B 1996, 58:267-288.
    • (1996) J. R. Statist. Soc. B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 21
    • 0037418225 scopus 로고    scopus 로고
    • Optimally sparse representation in general nonorthogonal dictionaries via l1 minimization
    • Donoho D.L., Elad M. Optimally sparse representation in general nonorthogonal dictionaries via l1 minimization. Proc. Natl. Acad. Sci. USA 2003, 100:2197-2202.
    • (2003) Proc. Natl. Acad. Sci. USA , vol.100 , pp. 2197-2202
    • Donoho, D.L.1    Elad, M.2
  • 23
    • 31744440684 scopus 로고    scopus 로고
    • Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information
    • Candès E., Romberg J., Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 2006, 52:489-509.
    • (2006) IEEE Trans. Inf. Theory , vol.52 , pp. 489-509
    • Candès, E.1    Romberg, J.2    Tao, T.3
  • 24
    • 84855347030 scopus 로고    scopus 로고
    • Preprints in Sparse Recovery/Compressed Sensing
    • T. Tao, Preprints in Sparse Recovery/Compressed Sensing, 2008 http://www.math.ucla.edu/~tao/preprints/sparse.html.
    • (2008)
    • Tao, T.1
  • 26
    • 34547688865 scopus 로고    scopus 로고
    • An interior-point method for large-scale l1-regularized logistic regression
    • Kim S., Koh K., Lustig M., Boyd S., Gorinevsky D. An interior-point method for large-scale l1-regularized logistic regression. J. Mach. Learn. Res. 2007, 8:1519-1555.
    • (2007) J. Mach. Learn. Res. , vol.8 , pp. 1519-1555
    • Kim, S.1    Koh, K.2    Lustig, M.3    Boyd, S.4    Gorinevsky, D.5
  • 27
    • 5444237123 scopus 로고    scopus 로고
    • Greed is good: algorithmic results for sparse approximation
    • Tropp J.A. Greed is good: algorithmic results for sparse approximation. IEEE Trans. Inf. Theory 2004, 50:2231-2242.
    • (2004) IEEE Trans. Inf. Theory , vol.50 , pp. 2231-2242
    • Tropp, J.A.1
  • 28
    • 64749092799 scopus 로고    scopus 로고
    • Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit
    • Needell D., Vershynin R. Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit. Found. Comput. Math. 2009, 9:317-334.
    • (2009) Found. Comput. Math. , vol.9 , pp. 317-334
    • Needell, D.1    Vershynin, R.2
  • 29
    • 0027842081 scopus 로고
    • Matching pursuits with time-frequency dictionaries
    • Mallat S., Zhang Z. Matching pursuits with time-frequency dictionaries. IEEE Trans. Signal Process. 1993, 41:3397-3415.
    • (1993) IEEE Trans. Signal Process. , vol.41 , pp. 3397-3415
    • Mallat, S.1    Zhang, Z.2
  • 30
    • 70349226893 scopus 로고    scopus 로고
    • A low complexity orthogonal matching pursuit for sparse signal approximation with shift-invariant dictionaries, in: ICASSP'09, IEEE International Conference on Acoustics, Speech and Signal Processing
    • B. Mailhe, R. Gribonval, F. Bimbot, P. Vandergheynst, A low complexity orthogonal matching pursuit for sparse signal approximation with shift-invariant dictionaries, in: ICASSP'09, IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 3445-3448.
    • Mailhe, B.1    Gribonval, R.2    Bimbot, F.3    Vandergheynst, P.4
  • 31
    • 83955163305 scopus 로고    scopus 로고
    • Sparse Solution of Underdetermined Linear Equations by Stagewise Orthogonal Matching Pursuit, Technical Report 2006-02, Stanford University, Stanford, CA
    • D. Donoho, Y. Tsaig, I. Drori, F. Starck, Sparse Solution of Underdetermined Linear Equations by Stagewise Orthogonal Matching Pursuit, Technical Report 2006-02, Stanford University, Stanford, CA, 2006.
    • (2006)
    • Donoho, D.1    Tsaig, Y.2    Drori, I.3    Starck, F.4
  • 32
    • 62749175137 scopus 로고    scopus 로고
    • CoSaMP: iterative signal recovery from incomplete and inaccurate samples
    • Needell D., Tropp J.A. CoSaMP: iterative signal recovery from incomplete and inaccurate samples. Appl. Comput. Harmonic Anal. 2008, 26:301-321.
    • (2008) Appl. Comput. Harmonic Anal. , vol.26 , pp. 301-321
    • Needell, D.1    Tropp, J.A.2
  • 33
    • 51849128608 scopus 로고    scopus 로고
    • Sparse coding via thresholding and local competition in neural circuits
    • Rozell C.J., Johnson D.H., Baraniuk E.G., Olshausen B.A. Sparse coding via thresholding and local competition in neural circuits. Neural Comput. 2008, 20:2526-2563.
    • (2008) Neural Comput. , vol.20 , pp. 2526-2563
    • Rozell, C.J.1    Johnson, D.H.2    Baraniuk, E.G.3    Olshausen, B.A.4
  • 34
    • 0037452922 scopus 로고    scopus 로고
    • The cost of cortical computation
    • Lennie P. The cost of cortical computation. Curr. Biol. 2003, 13:493-497.
    • (2003) Curr. Biol. , vol.13 , pp. 493-497
    • Lennie, P.1
  • 38
    • 0033114102 scopus 로고    scopus 로고
    • Feature extraction through LOCOCODE
    • Hochreiter S., Schmidhuber J. Feature extraction through LOCOCODE. Neural Comput. 1999, 11:679-714.
    • (1999) Neural Comput. , vol.11 , pp. 679-714
    • Hochreiter, S.1    Schmidhuber, J.2
  • 39
    • 0000228665 scopus 로고    scopus 로고
    • The cross-entropy method for combinatorial and continuous optimization
    • Rubinstein R.Y. The cross-entropy method for combinatorial and continuous optimization. Methodol. Comput. Appl. Probab. 1999, 2:127-190.
    • (1999) Methodol. Comput. Appl. Probab. , vol.2 , pp. 127-190
    • Rubinstein, R.Y.1
  • 40
    • 0031215849 scopus 로고    scopus 로고
    • The equation for response to selection and its use for prediction
    • Muehlenbein H. The equation for response to selection and its use for prediction. Evol. Comput. 1998, 5:303-346.
    • (1998) Evol. Comput. , vol.5 , pp. 303-346
    • Muehlenbein, H.1
  • 41
    • 17444384857 scopus 로고    scopus 로고
    • Application of the cross-entropy method to the buffer allocation problem in a simulation-based environment
    • Allon G., Kroese D.P., Raviv T., Rubinstein R.Y. Application of the cross-entropy method to the buffer allocation problem in a simulation-based environment. Ann. Oper. Res. 2005, 134:137-151.
    • (2005) Ann. Oper. Res. , vol.134 , pp. 137-151
    • Allon, G.1    Kroese, D.P.2    Raviv, T.3    Rubinstein, R.Y.4
  • 42
    • 0036927460 scopus 로고    scopus 로고
    • Sequence alignment by rare event simulation, in: Proceedings of the 2002 Winter Simulation Conference
    • J. Keith, D.P. Kroese, Sequence alignment by rare event simulation, in: Proceedings of the 2002 Winter Simulation Conference, pp. 320-327.
    • Keith, J.1    Kroese, D.P.2
  • 43
    • 38349162555 scopus 로고    scopus 로고
    • Learning to play using low-complexity rule-based policies: illustrations through Ms. Pac-Man
    • Szita I., Lorincz A. Learning to play using low-complexity rule-based policies: illustrations through Ms. Pac-Man. J. Artif. Intell. Res. 2007, 30:659-684.
    • (2007) J. Artif. Intell. Res. , vol.30 , pp. 659-684
    • Szita, I.1    Lorincz, A.2
  • 46
    • 84855356548 scopus 로고    scopus 로고
    • Online Variants of the Cross-Entropy Method
    • I. Szita, A. Lorincz, Online Variants of the Cross-Entropy Method, 2008 http://arxiv.org/abs/0801.1988.
    • (2008)
    • Szita, I.1    Lorincz, A.2
  • 47
    • 84973857317 scopus 로고
    • ART2: self-organization of stable category recognition codes for analog input patterns
    • Carpenter G.A., Grossberg S. ART2: self-organization of stable category recognition codes for analog input patterns. Appl. Opt. 1987, 26:4919-4930.
    • (1987) Appl. Opt. , vol.26 , pp. 4919-4930
    • Carpenter, G.A.1    Grossberg, S.2
  • 48
    • 0021776661 scopus 로고
    • A massively parallel architecture for a self-organizing neural pattern recognition machine
    • Carpenter G., Grossberg S. A massively parallel architecture for a self-organizing neural pattern recognition machine. Comput. Vision Graphics Image Process. 1987, 37:54-115.
    • (1987) Comput. Vision Graphics Image Process. , vol.37 , pp. 54-115
    • Carpenter, G.1    Grossberg, S.2
  • 49
    • 0033316361 scopus 로고    scopus 로고
    • Hierarchical models of object recognition in cortex
    • Riesenhuber M., Poggio T. Hierarchical models of object recognition in cortex. Nat. Neurosci. 1999, 2:1019-1025.
    • (1999) Nat. Neurosci. , vol.2 , pp. 1019-1025
    • Riesenhuber, M.1    Poggio, T.2
  • 50
    • 84855356524 scopus 로고    scopus 로고
    • l1-Magic: A Collection of Matlab Routines for Solving the Convex Optimization Programs Central to Compressive Sampling, online
    • W. Candès, J. Romberg, l1-Magic: A Collection of Matlab Routines for Solving the Convex Optimization Programs Central to Compressive Sampling, online, 2006 http://www.acm.caltech.edu/l1magic/.
    • (2006)
    • Candès, W.1    Romberg, J.2
  • 51
    • 0029938380 scopus 로고    scopus 로고
    • Emergence of simple-cell receptive field properties by learning a sparse code for natural images
    • Olshausen B.A., Field D.J. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 1996, 381:607-609.
    • (1996) Nature , vol.381 , pp. 607-609
    • Olshausen, B.A.1    Field, D.J.2
  • 52
    • 33847100046 scopus 로고    scopus 로고
    • A network that uses few active neurones to code visual input predicts the diverse shapes of cortical receptive fields
    • Rehn M., Sommer F.T. A network that uses few active neurones to code visual input predicts the diverse shapes of cortical receptive fields. J. Comput. Neurosci. 2007, 22:135-146.
    • (2007) J. Comput. Neurosci. , vol.22 , pp. 135-146
    • Rehn, M.1    Sommer, F.T.2
  • 53
    • 78049359766 scopus 로고    scopus 로고
    • Adaptive compressed sensing-a new class of self-organizing coding models for neuroscience, In: Proceedings of ICASSP'2010
    • W.K. Coulter, C.J. Hillar, G. Isley, F.T. Sommer. Adaptive compressed sensing-a new class of self-organizing coding models for neuroscience, In: Proceedings of ICASSP'2010, pp. 5494-5497, doi:. http://10.1109/ICASSP.2010.5495209.
    • Coulter, W.K.1    Hillar, C.J.2    Isley, G.3    Sommer, F.T.4
  • 54
    • 0028585928 scopus 로고
    • Hippocampal conjunctive encoding, storage, and recall: avoiding a tradeoff
    • O'Reilly R., McClelland J. Hippocampal conjunctive encoding, storage, and recall: avoiding a tradeoff. Hippocampus 1994, 4:661-682.
    • (1994) Hippocampus , vol.4 , pp. 661-682
    • O'Reilly, R.1    McClelland, J.2
  • 55
    • 0034321873 scopus 로고    scopus 로고
    • On the computational power of winner-take-all
    • Maass W. On the computational power of winner-take-all. Neural Comput. 2000, 12:2519-2535.
    • (2000) Neural Comput. , vol.12 , pp. 2519-2535
    • Maass, W.1
  • 56
    • 0034329021 scopus 로고    scopus 로고
    • Information processing with population codes
    • Pouget A., Dayan P., Zemel R. Information processing with population codes. Nat. Rev. Neurosci. 2000, 1:125-132.
    • (2000) Nat. Rev. Neurosci. , vol.1 , pp. 125-132
    • Pouget, A.1    Dayan, P.2    Zemel, R.3
  • 57
    • 33750437292 scopus 로고    scopus 로고
    • Bayesian inference with probabilistic population codes
    • Ma W.J., Beck J.M., Latham P.E., Pouget A. Bayesian inference with probabilistic population codes. Nat. Neurosci. 2006, 9:1432-1438.
    • (2006) Nat. Neurosci. , vol.9 , pp. 1432-1438
    • Ma, W.J.1    Beck, J.M.2    Latham, P.E.3    Pouget, A.4
  • 59
    • 80052139574 scopus 로고    scopus 로고
    • How can the human visual system process a natural scene in under 150ms? Experiments and neural network models
    • Thorpe S.J. How can the human visual system process a natural scene in under 150ms? Experiments and neural network models. Eurorean Symposium on Artificial Neural Networks, D-Facto public 1997.
    • (1997) Eurorean Symposium on Artificial Neural Networks, D-Facto public
    • Thorpe, S.J.1
  • 60
    • 0033360288 scopus 로고    scopus 로고
    • Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects
    • Rao R.P.N., Ballard D.H. Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat. Neurosci. 1999, 2:79-87.
    • (1999) Nat. Neurosci. , vol.2 , pp. 79-87
    • Rao, R.P.N.1    Ballard, D.H.2
  • 61
    • 0033359584 scopus 로고    scopus 로고
    • Predicting the visual world: silence is golden
    • Koch C., Poggio T. Predicting the visual world: silence is golden. Nat. Neurosci. 1999, 2:9-10.
    • (1999) Nat. Neurosci. , vol.2 , pp. 9-10
    • Koch, C.1    Poggio, T.2
  • 62
    • 33745140804 scopus 로고    scopus 로고
    • Always returning: feedback and sensory processing in visual cortex and thalamus
    • Sillito A.M., Cudeiro J., Jones H.E. Always returning: feedback and sensory processing in visual cortex and thalamus. Trends Neurosci. 2006, 29:307-316.
    • (2006) Trends Neurosci. , vol.29 , pp. 307-316
    • Sillito, A.M.1    Cudeiro, J.2    Jones, H.E.3
  • 63
    • 34247096930 scopus 로고    scopus 로고
    • A feedforward architecture accounts for rapid categorization
    • Serre T., Oliva A., Poggio T. A feedforward architecture accounts for rapid categorization. Proc. Natl. Acad. Sci. 2007, 104:6424-6429.
    • (2007) Proc. Natl. Acad. Sci. , vol.104 , pp. 6424-6429
    • Serre, T.1    Oliva, A.2    Poggio, T.3
  • 64
    • 65249157935 scopus 로고    scopus 로고
    • Timing, timing, timing: fast decoding of object information from intracranial field potentials in human visual cortex
    • Liu H., Agam Y., Madsen J.R., Kreiman G. Timing, timing, timing: fast decoding of object information from intracranial field potentials in human visual cortex. Neuron 2009, 62:281-290.
    • (2009) Neuron , vol.62 , pp. 281-290
    • Liu, H.1    Agam, Y.2    Madsen, J.R.3    Kreiman, G.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.