메뉴 건너뛰기




Volumn 389, Issue , 2012, Pages 148-154

Photopolymerizable sulfonated poly(ethylene glycol) proton exchange membranes for microfluidic and fuel cell applications

Author keywords

Fuel cells; Membranes; Microfluidic; PEGDA; Photopolymerization

Indexed keywords

FREE RADICAL PHOTOPOLYMERIZATION; FTIR; FUEL CELL APPLICATION; ION EXCHANGE CAPACITY; MEMBRANE MATERIAL; MICROFLUIDIC FUEL CELL; PEGDA; PHENYL ETHERS; POLYETHYLENE GLYCOL DIACRYLATE; PROTON EXCHANGE MEMBRANES; THIN MEMBRANE;

EID: 83855165668     PISSN: 03767388     EISSN: 18733123     Source Type: Journal    
DOI: 10.1016/j.memsci.2011.10.024     Document Type: Article
Times cited : (19)

References (34)
  • 1
    • 70350455268 scopus 로고    scopus 로고
    • A 1.5μL microbial fuel cell for on-chip bioelectricity generation
    • Qian F., Baum M., Gu Q., Morse D.E. A 1.5μL microbial fuel cell for on-chip bioelectricity generation. Lab Chip 2009, 9:3076-3081.
    • (2009) Lab Chip , vol.9 , pp. 3076-3081
    • Qian, F.1    Baum, M.2    Gu, Q.3    Morse, D.E.4
  • 2
    • 34748887728 scopus 로고    scopus 로고
    • Energy conversion in microsystems: is there a role for micro/nanofluidics?
    • Pennathur S., Eijkel J.C.T., van der Berg A. Energy conversion in microsystems: is there a role for micro/nanofluidics?. Lab Chip 2007, 7:1234-1237.
    • (2007) Lab Chip , vol.7 , pp. 1234-1237
    • Pennathur, S.1    Eijkel, J.C.T.2    van der Berg, A.3
  • 3
    • 69749109835 scopus 로고    scopus 로고
    • MEMS fuel cell system integrated with a methanol reformer for a portable power source
    • Kim T., Kwon S. MEMS fuel cell system integrated with a methanol reformer for a portable power source. Sens. Actuators A 2009, 154:204-211.
    • (2009) Sens. Actuators A , vol.154 , pp. 204-211
    • Kim, T.1    Kwon, S.2
  • 4
    • 34249782306 scopus 로고    scopus 로고
    • Recent developments in MEMS-based miniature fuel cells
    • Pinochat T., Gauthier-Manuel B. Recent developments in MEMS-based miniature fuel cells. Microsyst. Technol. 2007, 13:1671-1678.
    • (2007) Microsyst. Technol. , vol.13 , pp. 1671-1678
    • Pinochat, T.1    Gauthier-Manuel, B.2
  • 5
  • 6
    • 24644490760 scopus 로고    scopus 로고
    • Membraneless laminar flow-based micro fuel cells operating in alkaline, acidic, and acidic/alkaline media
    • Choban E.R., Spendelow J.S., Gancs L., Wieckowski A., Kenis P.J.A. Membraneless laminar flow-based micro fuel cells operating in alkaline, acidic, and acidic/alkaline media. Electrochim. Acta 2005, 5390-5398.
    • (2005) Electrochim. Acta , pp. 5390-5398
    • Choban, E.R.1    Spendelow, J.S.2    Gancs, L.3    Wieckowski, A.4    Kenis, P.J.A.5
  • 7
    • 69749109835 scopus 로고    scopus 로고
    • MEMS fuel cell system integrated with a methanol reformer for portable a power source
    • Kim T., Kwon S. MEMS fuel cell system integrated with a methanol reformer for portable a power source. Sens. Actuators A: Phys. 2009, 154:204-211.
    • (2009) Sens. Actuators A: Phys. , vol.154 , pp. 204-211
    • Kim, T.1    Kwon, S.2
  • 8
    • 34248573933 scopus 로고    scopus 로고
    • A review of polymer electrolyte membranes for direct methanol fuel cells
    • Neburchilov V., Martin J., Wang H., Zhang J. A review of polymer electrolyte membranes for direct methanol fuel cells. J. Power Sources 2007, 169:221-238.
    • (2007) J. Power Sources , vol.169 , pp. 221-238
    • Neburchilov, V.1    Martin, J.2    Wang, H.3    Zhang, J.4
  • 9
    • 33845656852 scopus 로고    scopus 로고
    • Overview on the challenges and developments of micro-direct methanol fuel cells (DMFC)
    • Kamarudin S.K., Daud W.R.W., Ho S.L., Hasran U.A. Overview on the challenges and developments of micro-direct methanol fuel cells (DMFC). J. Power Sources 2007, 163:743-754.
    • (2007) J. Power Sources , vol.163 , pp. 743-754
    • Kamarudin, S.K.1    Daud, W.R.W.2    Ho, S.L.3    Hasran, U.A.4
  • 10
    • 0037097401 scopus 로고    scopus 로고
    • Design considerations for miniaturized PEM fuel cells
    • Meyers J.P., Maynard H.L. Design considerations for miniaturized PEM fuel cells. J. Power Sources 2002, 109:76-88.
    • (2002) J. Power Sources , vol.109 , pp. 76-88
    • Meyers, J.P.1    Maynard, H.L.2
  • 12
    • 0037126465 scopus 로고    scopus 로고
    • Enhancing proton mobility in proton exchange membranes: lessons from molecular dynamics simulations
    • Spohr E., Commer P., Kornyshev A.A. Enhancing proton mobility in proton exchange membranes: lessons from molecular dynamics simulations. J. Phys. Chem. B 2002, 106:10560-10569.
    • (2002) J. Phys. Chem. B , vol.106 , pp. 10560-10569
    • Spohr, E.1    Commer, P.2    Kornyshev, A.A.3
  • 13
    • 0032317104 scopus 로고    scopus 로고
    • Nafion-based composite polymer electrolyte membranes
    • Nouel K.M., Fedkiw P.S. Nafion-based composite polymer electrolyte membranes. Electrochim. Acta 1998, 43:2381-2387.
    • (1998) Electrochim. Acta , vol.43 , pp. 2381-2387
    • Nouel, K.M.1    Fedkiw, P.S.2
  • 14
    • 24944537062 scopus 로고    scopus 로고
    • Ion exchange membranes: state of their development and perspective
    • Xu T. Ion exchange membranes: state of their development and perspective. J. Membr. Sci. 2005, 263:1-29.
    • (2005) J. Membr. Sci. , vol.263 , pp. 1-29
    • Xu, T.1
  • 15
    • 40849114410 scopus 로고    scopus 로고
    • New poly(ethylene oxide) soft segment-containing sulfonated polyimide copolymers for high temperature proton-exchange membrane fuel cells
    • Bia H., Ho W.S.W. New poly(ethylene oxide) soft segment-containing sulfonated polyimide copolymers for high temperature proton-exchange membrane fuel cells. J. Membr. Sci. 2008, 313:75-85.
    • (2008) J. Membr. Sci. , vol.313 , pp. 75-85
    • Bia, H.1    Ho, W.S.W.2
  • 16
    • 46349109514 scopus 로고    scopus 로고
    • Proton exchange membrane using partially sulfonated polystyrene-b-poly(dimethylsiloxane) for direct methanol fuel cell
    • Lee W., Kim H., Lee H. Proton exchange membrane using partially sulfonated polystyrene-b-poly(dimethylsiloxane) for direct methanol fuel cell. J. Membr. Sci. 2008, 320:78-85.
    • (2008) J. Membr. Sci. , vol.320 , pp. 78-85
    • Lee, W.1    Kim, H.2    Lee, H.3
  • 17
    • 64549092801 scopus 로고    scopus 로고
    • Synthesis and characterization of crosslinked sulfonated poly(arylene ether sulfone) membranes for DMFC applications
    • Feng S., Shang Y., Xie X., Wang Y., Xu J. Synthesis and characterization of crosslinked sulfonated poly(arylene ether sulfone) membranes for DMFC applications. J. Membr. Sci. 2009, 335:13-20.
    • (2009) J. Membr. Sci. , vol.335 , pp. 13-20
    • Feng, S.1    Shang, Y.2    Xie, X.3    Wang, Y.4    Xu, J.5
  • 18
    • 0142188701 scopus 로고    scopus 로고
    • Sulfonated poly(ether ether ketone) membranes for direct methanol fuel cells
    • Yang B., Manthiram A. Sulfonated poly(ether ether ketone) membranes for direct methanol fuel cells. Electrochem. Solid-State Lett. 2003, 6:A229-A231.
    • (2003) Electrochem. Solid-State Lett. , vol.6
    • Yang, B.1    Manthiram, A.2
  • 19
    • 33746500249 scopus 로고    scopus 로고
    • Synthesis, characterization of biodegradable dextran-ally isocyanate-ethylamine/polyethylene glycol-diacrylate hydrogels and their in vitro release of albumin
    • Sun G.M., Chu C.C. Synthesis, characterization of biodegradable dextran-ally isocyanate-ethylamine/polyethylene glycol-diacrylate hydrogels and their in vitro release of albumin. Carbohydr. Polym. 2006, 65:273-287.
    • (2006) Carbohydr. Polym. , vol.65 , pp. 273-287
    • Sun, G.M.1    Chu, C.C.2
  • 20
    • 0042061223 scopus 로고    scopus 로고
    • Hydrogels for tissue engineering: scaffold design variables and applications
    • Drury J.L., Mooney D.J. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 2003, 24:4337-4351.
    • (2003) Biomaterials , vol.24 , pp. 4337-4351
    • Drury, J.L.1    Mooney, D.J.2
  • 22
    • 33747265153 scopus 로고    scopus 로고
    • Viscoelastic characterization of UV polymerized poly(ethylene glycol) diacrylate networks with varying extents of crosslinking
    • Kalakkunnath S., Kalika D.S., Lin H., Freeman B.D. Viscoelastic characterization of UV polymerized poly(ethylene glycol) diacrylate networks with varying extents of crosslinking. J. Polym. Sci. B: Polym. Phys. 2006, 44:2058-2070.
    • (2006) J. Polym. Sci. B: Polym. Phys. , vol.44 , pp. 2058-2070
    • Kalakkunnath, S.1    Kalika, D.S.2    Lin, H.3    Freeman, B.D.4
  • 23
    • 71249094616 scopus 로고    scopus 로고
    • Water uptake, transport and structure characterization in poly(ethylene glycol) diacrylate hydrogels
    • Wu Y.H., Park H.B., Kai T., Freeman B.D., Kalika D.S. Water uptake, transport and structure characterization in poly(ethylene glycol) diacrylate hydrogels. J. Membr. Sci. 2010, 347:197-208.
    • (2010) J. Membr. Sci. , vol.347 , pp. 197-208
    • Wu, Y.H.1    Park, H.B.2    Kai, T.3    Freeman, B.D.4    Kalika, D.S.5
  • 24
    • 38149097813 scopus 로고    scopus 로고
    • The stability of semi-interpenetrating polymer networks based on sulfonated polyimide and poly(ethylene glycol) diacrylate for fuel cell applications
    • Seo J., Jang W., Lee S., Han H. The stability of semi-interpenetrating polymer networks based on sulfonated polyimide and poly(ethylene glycol) diacrylate for fuel cell applications. Polym. Degrad. Stab. 2008, 93:298-304.
    • (2008) Polym. Degrad. Stab. , vol.93 , pp. 298-304
    • Seo, J.1    Jang, W.2    Lee, S.3    Han, H.4
  • 25
    • 0000987265 scopus 로고    scopus 로고
    • Contact angle measurements and contact angle interpretation. 1. Contact angle measurements by axisymmetric drop shape analysis and a goniometer sessile drop technique
    • Kwok D.Y., Gietzelt T., Grundke K., Jacobasch H.J., Neumann A.W. Contact angle measurements and contact angle interpretation. 1. Contact angle measurements by axisymmetric drop shape analysis and a goniometer sessile drop technique. Langmuir 1997, 13:2880-2894.
    • (1997) Langmuir , vol.13 , pp. 2880-2894
    • Kwok, D.Y.1    Gietzelt, T.2    Grundke, K.3    Jacobasch, H.J.4    Neumann, A.W.5
  • 26
    • 26844517553 scopus 로고    scopus 로고
    • Importance of proton conductivity measurements in polymer electrolyte membrane for fuel cell application
    • Lee C.H., Park H.B., Lee Y.M., Lee R.D. Importance of proton conductivity measurements in polymer electrolyte membrane for fuel cell application. Ind. Eng. Chem. Res. 2005, 44:7616-7626.
    • (2005) Ind. Eng. Chem. Res. , vol.44 , pp. 7616-7626
    • Lee, C.H.1    Park, H.B.2    Lee, Y.M.3    Lee, R.D.4
  • 27
    • 14644446015 scopus 로고    scopus 로고
    • Preparation and properties of PEG hydrogel from PEG macromonomer with sulfonate end group
    • Kim J.H., Kim J.G., Kim D., Kim Y.H. Preparation and properties of PEG hydrogel from PEG macromonomer with sulfonate end group. J. Appl. Polym. Sci. 2005, 96:56-61.
    • (2005) J. Appl. Polym. Sci. , vol.96 , pp. 56-61
    • Kim, J.H.1    Kim, J.G.2    Kim, D.3    Kim, Y.H.4
  • 28
    • 58649100040 scopus 로고    scopus 로고
    • Highly stable proton conducting nanocomposite polymer electrolyte membrane (PEM) prepared by pore modifications: an extremely low methanol permeable PEM
    • Tripathi B.P., Kumar M., Shahi V.K. Highly stable proton conducting nanocomposite polymer electrolyte membrane (PEM) prepared by pore modifications: an extremely low methanol permeable PEM. J. Membr. Sci. 2009, 327:145-154.
    • (2009) J. Membr. Sci. , vol.327 , pp. 145-154
    • Tripathi, B.P.1    Kumar, M.2    Shahi, V.K.3
  • 29
    • 29244437530 scopus 로고    scopus 로고
    • Study of EVOH based single ion polymer electrolyte: composition and microstructure effects on the proton conductivity
    • Zhang Y.J., Huang Y.D., Wang L. Study of EVOH based single ion polymer electrolyte: composition and microstructure effects on the proton conductivity. Solid State Ionics 2006, 177:65-71.
    • (2006) Solid State Ionics , vol.177 , pp. 65-71
    • Zhang, Y.J.1    Huang, Y.D.2    Wang, L.3
  • 30
  • 31
    • 18544385485 scopus 로고    scopus 로고
    • Low methanol permeable composite Nafion/silica/PWA membranes for low temperature direct methanol fuel cells
    • Xu W.L., Lu T.H., Liu C.P., Xing W. Low methanol permeable composite Nafion/silica/PWA membranes for low temperature direct methanol fuel cells. Electrochim. Acta 2005, 50:3280-3285.
    • (2005) Electrochim. Acta , vol.50 , pp. 3280-3285
    • Xu, W.L.1    Lu, T.H.2    Liu, C.P.3    Xing, W.4
  • 32
    • 40849116045 scopus 로고    scopus 로고
    • Preparation, characterization, and properties of new crosslinked proton conducting membranes with polyoxyalkylene moieties
    • Kuo P.L., Liang W.J., Hsu C.Y., Jheng W.H. Preparation, characterization, and properties of new crosslinked proton conducting membranes with polyoxyalkylene moieties. Polymer 2008, 49:1792-1799.
    • (2008) Polymer , vol.49 , pp. 1792-1799
    • Kuo, P.L.1    Liang, W.J.2    Hsu, C.Y.3    Jheng, W.H.4
  • 33
    • 0035970895 scopus 로고    scopus 로고
    • Relationship between ionic conductivity of perfluorinated ionomeric membranes and nonaqueous solvent properties
    • Doyle M., Lewittes M.E., Roelofs M.G., Perusich S.A., Lowrey R.E. Relationship between ionic conductivity of perfluorinated ionomeric membranes and nonaqueous solvent properties. J. Membr. Sci. 2001, 184:257-273.
    • (2001) J. Membr. Sci. , vol.184 , pp. 257-273
    • Doyle, M.1    Lewittes, M.E.2    Roelofs, M.G.3    Perusich, S.A.4    Lowrey, R.E.5
  • 34
    • 15744389376 scopus 로고    scopus 로고
    • Thermodynamics and proton transport in Nafion II. Proton diffusion mechanisms and conductivity
    • Choi P., Jalani N.H., Datta R. Thermodynamics and proton transport in Nafion II. Proton diffusion mechanisms and conductivity. J. Electrochem. Soc. 2005, 152:E123-E130.
    • (2005) J. Electrochem. Soc. , vol.152
    • Choi, P.1    Jalani, N.H.2    Datta, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.