메뉴 건너뛰기




Volumn , Issue , 2011, Pages 2696-2701

Gleason grade-based automatic classification of prostate cancer pathological images

Author keywords

fractal dimension; Gleason grading; Prostate cancer; statistical classification; wavelet features

Indexed keywords

AUTOMATIC CLASSIFICATION; AUTOMATIC RECOGNITION; CLASSIFICATION ACCURACY; COLOR CHANNELS; FEATURES EXTRACTION; FRACTAL ANALYSIS; GLEASON GRADING; IMAGE PROCESSING ALGORITHM; PATHOLOGICAL IMAGES; PROSTATE CANCER BIOPSIES; PROSTATE CANCERS; SEGMENTATION INFORMATIONS; STATISTICAL CLASSIFICATION; WAVELET FEATURES;

EID: 83755229158     PISSN: 1062922X     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICSMC.2011.6084080     Document Type: Conference Paper
Times cited : (13)

References (23)
  • 1
    • 84855353577 scopus 로고    scopus 로고
    • What are the key statistics about prostate cancer
    • [online]. Available
    • American cancer Society.(2010). "What are the key statistics about prostate cancer" in the latest American Cancer Society estimates for prostate cancer in the United States". [online]. Available: http://www.cancer.org/cancer/prostatecancer/detailedguide/prostate-cancer-key- statistics
    • (2010) The Latest American Cancer Society Estimates for Prostate Cancer in the United States
  • 2
    • 84855355837 scopus 로고    scopus 로고
    • John Hopkins University. [online]. Available
    • John Hopkins Pathology. (2010)."Understanding your pathology report: FAQ Sheet", John Hopkins University. [online]. Available: http://pathology.jhu.edu/department/patients/FAQscancer.cfm
    • (2010) Understanding Your Pathology Report: FAQ Sheet
  • 6
    • 83755168636 scopus 로고    scopus 로고
    • Background, principles, and overview of the Gleason system
    • Lippincott Williams and Wilkins
    • M. Amin, D. Gringnon, P. Humphrey, and J. Srigley, "Background, principles, and overview of the Gleason system", in Gleason Grading of Prostate Cancer, Lippincott Williams and Wilkins 2004, pp.2-9.
    • (2004) Gleason Grading of Prostate Cancer , pp. 2-9
    • Amin, M.1    Gringnon, D.2    Humphrey, P.3    Srigley, J.4
  • 7
    • 0029012972 scopus 로고
    • A hybrid neural and statistical classifier system for histopathologic grading of prostatic lesions
    • R. Stotzka, R. Männer, PH Bartels, and D. Thompson, "A hybrid neural and statistical classifier system for histopathologic grading of prostatic lesions", Anal Quant Cytol Histol. vol. 17 pp. 204-218, 1995.
    • (1995) Anal Quant Cytol Histol , vol.17 , pp. 204-218
    • Stotzka, R.1    Männer, R.2    Bartels, P.H.3    Thompson, D.4
  • 12
    • 47049121609 scopus 로고    scopus 로고
    • Tumor classification in histological images of prostate using color texture
    • A. Tabesh, and M. Teverovskiy, "Tumor classification in histological images of prostate using color texture," Proc. IEEE, pp.841-845, 2006.
    • (2006) Proc. IEEE , pp. 841-845
    • Tabesh, A.1    Teverovskiy, M.2
  • 14
    • 52149100786 scopus 로고    scopus 로고
    • Classification for pathological prostate images based on fractal analysis
    • C.-H. Lee, and P.W. Huang, "Classification for pathological prostate images based on fractal analysis," Proc. IEEE CISP '08, pp.113-117, 2008
    • (2008) Proc. IEEE CISP '08 , pp. 113-117
    • Lee, C.-H.1    Huang, P.W.2
  • 15
    • 67649515593 scopus 로고    scopus 로고
    • Automatic classification for pathological prostate images based on fractal analysis
    • July
    • P. W. Huang and C.-H. Lee, "Automatic classification for pathological prostate images based on fractal analysis," IEEE Trans. on Medical Imaging, vol. 28, pp.1037-1050, July 2009.
    • (2009) IEEE Trans. on Medical Imaging , vol.28 , pp. 1037-1050
    • Huang, P.W.1    Lee, C.-H.2
  • 17
    • 77952049535 scopus 로고    scopus 로고
    • A new edge detection algorithm in image processing based on LIP-ratio approach
    • S. Agaian and A. Almuntashri, "A new edge detection algorithm in image processing based on LIP-ratio approach", Proc. SPIE, vol. 7532, 2010.
    • (2010) Proc. SPIE , vol.7532
    • Agaian, S.1    Almuntashri, A.2
  • 18
    • 78751553586 scopus 로고    scopus 로고
    • An algorithm for visualizing and detecting edges in RGB color images using logarithmic ratio approach
    • A. Almuntashri and S. Agaian, "An algorithm for visualizing and detecting edges in RGB color images using logarithmic ratio approach"Proc. IEEE (SMC2010), pp. 3942-3947, 2010.
    • (2010) Proc. IEEE (SMC2010) , pp. 3942-3947
    • Almuntashri, A.1    Agaian, S.2
  • 20
    • 78650557058 scopus 로고    scopus 로고
    • Color texture classification using wavelet transform and neural network ensembles
    • A. Sengur, "Color texture classification using wavelet transform and neural network ensembles", The Arabian journal for science and engineering, 34, pp. 491-502, 2009.
    • (2009) The Arabian Journal for Science and Engineering , vol.34 , pp. 491-502
    • Sengur, A.1
  • 21
    • 0036568192 scopus 로고    scopus 로고
    • New method for feature extraction based on fractal behavior
    • DOI 10.1016/S0031-3203(01)00095-4, PII S0031320301000954, Handwriting processing and applicaions
    • Y.-Y. Tang, Y. Tao, and E. C.M. Lam, "New method for feature extraction based on fractal behavior", Pattern Recognition, vol. 35,pp. 1071-1081, 2002. (Pubitemid 34188964)
    • (2002) Pattern Recognition , vol.35 , Issue.5 , pp. 1071-1081
    • Tang, Y.Y.1    Tao, Y.2    Lam, E.C.M.3
  • 22
    • 0028336445 scopus 로고
    • An efficient differential box-counting approach to compute fractal dimension of image
    • N. Sarkar, and B.B. Chaudhuri, "An efficient differential box-counting approach to compute fractal dimension of image", Trans. IEEE on Systems, Man and Cybernetics, vol. 24, 15-120, 1994.
    • (1994) Trans. IEEE on Systems, Man and Cybernetics , vol.24 , pp. 15-120
    • Sarkar, N.1    Chaudhuri, B.B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.