메뉴 건너뛰기




Volumn 15, Issue 12, 2011, Pages 3701-3713

DREAM(D): An adaptive Markov Chain Monte Carlo simulation algorithm to solve discrete, noncontinuous, and combinatorial posterior parameter estimation problems

Author keywords

[No Author keywords available]

Indexed keywords

BAYESIAN APPROACHES; BUILDING BLOCKES; COMBINATORIAL OPTIMIZATION PROBLEMS; CONTINUOUS VARIABLES; DETAILED BALANCE; DISCRETE SAMPLING; EFFICIENT SAMPLING; ENVIRONMENTAL MODELING; ERGODICITY; FIXED POINTS; MARKOV CHAIN MONTE CARLO SIMULATION; OPTIMAL EXPERIMENTAL DESIGNS; PARAMETER SPACES; PREDICTIVE UNCERTAINTY; PROPOSAL DISTRIBUTION; RUNOFF MODEL; SOIL WATER RETENTION CURVES;

EID: 83755225865     PISSN: 10275606     EISSN: 16077938     Source Type: Journal    
DOI: 10.5194/hess-15-3701-2011     Document Type: Article
Times cited : (128)

References (44)
  • 3
    • 0026445234 scopus 로고
    • Effective and efficient global optimization for conceptual rainfall-runoff models
    • Duan, Q., Gupta, V. K., and Sorooshian, S.: Effective and efficient global optimization for conceptual rainfall-runoff models, Water Resour. Res., 28, 1015-1031, 1992.
    • (1992) Water Resour. Res. , vol.28 , pp. 1015-1031
    • Duan, Q.1    Gupta, V.K.2    Sorooshian, S.3
  • 5
    • 33845293355 scopus 로고    scopus 로고
    • Optimization of ERT surveys for monitoring transient hydrological events using perturbation sensitivity and genetic algorithms
    • Furman, A., Ferré, T. P. A., and Warrick, A. W.: Optimization of ERT surveys for monitoring transient hydrological events using perturbation sensitivity and genetic algorithms, Vadose Zone J., 3, 1230-1239, 2004.
    • (2004) Vadose Zone J. , vol.3 , pp. 1230-1239
    • Furman, A.1    Ferré, T.P.A.2    Warrick, A.W.3
  • 6
    • 84950453304 scopus 로고
    • Sampling based approaches to calculating marginal densities
    • Gelfand, A. E. and Smith, A. F.: Sampling based approaches to calculating marginal densities, J. Am. Stat. Assoc., 85, 398-409, 1990.
    • (1990) J. Am. Stat. Assoc. , vol.85 , pp. 398-409
    • Gelfand, A.E.1    Smith, A.F.2
  • 7
    • 84972492387 scopus 로고
    • Inference from iterative simulation using multiple sequences
    • Gelman, A. G. and Rubin, D. B.: Inference from iterative simulation using multiple sequences, Stat. Sci., 7, 457-472, 1992.
    • (1992) Stat. Sci. , vol.7 , pp. 457-472
    • Gelman, A.G.1    Rubin, D.B.2
  • 8
    • 0002388372 scopus 로고    scopus 로고
    • Strategies for improving MCMC
    • edited by: Gilks, W. R., Richardson, S., and Spiegelhalter, D. J., Chapman & Hall, London
    • Gilks, W. R. and Roberts, G. O.: Strategies for improving MCMC, in: Markov Chain Monte Carlo in Practice, edited by: Gilks, W. R., Richardson, S., and Spiegelhalter, D. J., Chapman & Hall, London, 89-114, 1996.
    • (1996) : Markov Chain Monte Carlo in Practice , pp. 89-114
    • Gilks, W.R.1    Roberts, G.O.2
  • 10
    • 77956889087 scopus 로고
    • Reversible jump markov chain monte carlo computation and bayesian model determination
    • Green, P. J.: Reversible Jump Markov Chain Monte Carlo Computation and Bayesian Model Determination, Biometrika, 82, 711-732, 1995.
    • (1995) Biometrika , vol.82 , pp. 711-732
    • Green, P.J.1
  • 11
    • 77956890234 scopus 로고
    • Monte carlo sampling methods using markov chains and their applications
    • Hastings, W. K.: Monte Carlo sampling methods using Markov chains and their applications, Biometrika, 57, 97-109, 1970.
    • (1970) Biometrika , vol.57 , pp. 97-109
    • Hastings, W.K.1
  • 12
    • 0033436531 scopus 로고    scopus 로고
    • Adaptive proposal distribution for random walk Metropolis algorithm
    • Haario, H., Saksman, E., and Tamminen, J.: Adaptive proposal distribution for random walk Metropolis algorithm, Computation. Stat., 14, 375-395, 1999.
    • (1999) Computation. Stat. , vol.14 , pp. 375-395
    • Haario, H.1    Saksman, E.2    Tamminen, J.3
  • 13
    • 0038563932 scopus 로고    scopus 로고
    • An adaptive Metropolis algorithm
    • Haario, H., Saksman, E., and Tamminen, J.: An adaptive Metropolis algorithm, Bernoulli, 7, 223-242, 2001. (Pubitemid 33793059)
    • (2001) Bernoulli , vol.7 , Issue.2 , pp. 223-242
    • Haario, H.1    Saksman, E.2    Tamminen, J.3
  • 14
    • 33746082065 scopus 로고    scopus 로고
    • Componentwise adaptation for high dimensional MCMC
    • Haario, H., Saksman, E., and Tamminen, J.: Componentwise adaptation for high dimensional MCMC, Computation. Stat., 20, 265-274, 2005.
    • (2005) Computation. Stat. , vol.20 , pp. 265-274
    • Haario, H.1    Saksman, E.2    Tamminen, J.3
  • 15
    • 33750082644 scopus 로고    scopus 로고
    • DRAM: Efficient adaptive MCMC
    • DOI 10.1007/s11222-006-9438-0
    • Haario, H., Laine, M., Mira, A., and Saksman, E.: DRAM: Efficient adaptive MCMC, Stat. Comput., 16, 339-354, 2006. (Pubitemid 44581755)
    • (2006) Statistics and Computing , vol.16 , Issue.4 , pp. 339-354
    • Haario, H.1    Laine, M.2    Mira, A.3    Saksman, E.4
  • 16
    • 83755216441 scopus 로고    scopus 로고
    • The use of an optimization method in assessment of water quality sampling sites
    • Harmancioglu, N. B., Icaga, Y., and Gul, A.: The use of an optimization method in assessment of water quality sampling sites, European Water, 5/6, 25-35, 2004.
    • (2004) European Water , vol.5-6 , pp. 25-35
    • Harmancioglu, N.B.1    Icaga, Y.2    Gul, A.3
  • 17
    • 33749578960 scopus 로고    scopus 로고
    • Unwed numbers
    • doi:10.1511/2006.1.12
    • Hayes, B.: Unwed numbers, American Scientist, 94, 12-15, doi:10.1511/2006.1.12, 2006.
    • (2006) American Scientist , vol.94 , pp. 12-15
    • Hayes, B.1
  • 18
    • 33646495330 scopus 로고    scopus 로고
    • Bayesian analysis of input uncertainty in hydrologic modeling: 2
    • doi:10.1029/2005WR004376
    • Kavetski, D., Kuczera, G., and Franks, S. W.: Bayesian analysis of input uncertainty in hydrologic modeling: 2. Application, Water Resour. Res., 42, W03408, doi:10.1029/2005WR004376, 2006.
    • (2006) Application, Water Resour. Res. , vol.42
    • Kavetski, D.1    Kuczera, G.2    Franks, S.W.3
  • 21
    • 33750474092 scopus 로고    scopus 로고
    • Towards a Bayesian total error analysis of conceptual rainfall-runoff models: Characterising model error using storm-dependent parameters
    • DOI 10.1016/j.jhydrol.2006.05.010, PII S0022169406002745
    • Kuczera, G., Kavetski, D., Franks, F. W., and Thyer, M. T.: Towards a Bayesian total error analysis of conceptual rainfallrunoff models: Characterising model error using stormdependent parameters, J. Hydrol., 331, 161-177, 2006. (Pubitemid 44646456)
    • (2006) Journal of Hydrology , vol.331 , Issue.1-2 , pp. 161-177
    • Kuczera, G.1    Kavetski, D.2    Franks, S.3    Thyer, M.4
  • 22
    • 83755191990 scopus 로고    scopus 로고
    • High-dimensional posterior exploration of hydrologic models using multi-try DREAM(ZS) and high performance computing
    • in review, doi:2011WR010608RR
    • Laloy, E. and Vrugt, J. A.: High-dimensional posterior exploration of hydrologic models using multi-try DREAM(ZS) and high performance computing, Water Resour. Res., in review, doi:2011WR010608RR, 2011.
    • (2011) Water Resour. Res.
    • Laloy, E.1    Vrugt, J.A.2
  • 24
    • 84855222661 scopus 로고    scopus 로고
    • Bayesian analysis of data-worth considering model and parameter uncertainties
    • doi:10.1016/j.advwatres.2011.02.007, in press
    • Neuman, S. P., Xue, L., Ye, M., and Lu, D.: Bayesian analysis of data-worth considering model and parameter uncertainties, Adv. Water Resour., doi:10.1016/j.advwatres.2011.02.007, in press, 2011.
    • (2011) Adv. Water Resour.
    • Neuman, S.P.1    Xue, L.2    Ye, M.3    Lu, D.4
  • 25
    • 53849118126 scopus 로고    scopus 로고
    • Discrete parameterization of hydrological models: Evaluating the use of parameter sets libraries over 900 catchments
    • doi:10.1029/2007WR006579
    • Perrin, C., Andréassian, V., Rojas Serna, C., Mathevet, T., and Le Moine, N.: Discrete parameterization of hydrological models: Evaluating the use of parameter sets libraries over 900 catchments, Water Resour. Res., 44, W08447, doi:10.1029/2007WR006579, 2008.
    • (2008) Water Resour. Res. , vol.44
    • Perrin, C.1    Andréassian, V.2    Rojas Serna, C.3    Mathevet, T.4    Le Moine, N.5
  • 27
    • 38149146212 scopus 로고
    • Convergence of adaptive direction sampling
    • Roberts, G. O. and Gilks,W. R.: Convergence of adaptive direction sampling, J. Multivariate Anal., 49, 287-298, 1994.
    • (1994) J. Multivariate Anal. , vol.49 , pp. 287-298
    • Roberts, G.O.1    Gilks, W.R.2
  • 28
    • 34548026526 scopus 로고    scopus 로고
    • Coupling and ergodicity of adaptive Markov chain Monte Carlo algorithms
    • Roberts, G. O. and Rosenthal, J. S.: Coupling and ergodicity of adaptive Markov chain Monte Carlo algorithms, J. Appl. Probab., 44, 458-475, 2007.
    • (2007) J. Appl. Probab. , vol.44 , pp. 458-475
    • Roberts, G.O.1    Rosenthal, J.S.2
  • 30
    • 0013037129 scopus 로고    scopus 로고
    • Optimal scaling for various metropolis-hastings algorithms
    • DOI 10.1214/ss/1015346320
    • Roberts, G. O. and Rosenthal, J. S.: Optimal scaling for various Metropolis-Hastings algorithms, Statist. Sci., 16, 351-367, 2001. (Pubitemid 33636356)
    • (2001) Statistical Science , vol.16 , Issue.4 , pp. 351-367
    • Roberts, G.O.1    Rosenthal, J.S.2
  • 31
    • 33845710167 scopus 로고    scopus 로고
    • Quantifying hydrological modeling errors through a mixture of normal distributions
    • DOI 10.1016/j.jhydrol.2006.07.005, PII S0022169406003635
    • Schaefli, B., Talamba, D. B., and Musy, A.: Quantifying hydrological modeling errors through a mixture of normal distributions, J. Hydrol., 332, 303-315, 2007. (Pubitemid 44969651)
    • (2007) Journal of Hydrology , vol.332 , Issue.3-4 , pp. 303-315
    • Schaefli, B.1    Talamba, D.B.2    Musy, A.3
  • 32
    • 77954727893 scopus 로고    scopus 로고
    • A formal likelihood function for parameter and predictive inference of hydrologic models with correlated, heteroscedastic and non-gaussian errors
    • doi:10.1029/2009WR008933
    • Schoups, G. and Vrugt, J. A.: A formal likelihood function for parameter and predictive inference of hydrologic models with correlated, heteroscedastic and non-gaussian errors, Water Resour. Res., 46, W10531, doi:10.1029/ 2009WR008933, 2010.
    • (2010) Water Resour. Res. , vol.46
    • Schoups, G.1    Vrugt, J.A.2
  • 33
    • 68949104874 scopus 로고    scopus 로고
    • Bayesian methods in hydrologic modeling: A study of recent advancements in Markov chain Monte Carlo techniques
    • doi:10.1029/2007WR006705
    • Smith, T. J. and Marshall, L. A.: Bayesian methods in hydrologic modeling: A study of recent advancements in Markov chain Monte Carlo techniques,Water Resour. Res., 44, W00B05, doi:10.1029/2007WR006705, 2008.
    • (2008) Water Resour. Res. , vol.44
    • Smith, T.J.1    Marshall, L.A.2
  • 34
    • 0019227508 scopus 로고
    • Stochastic parameter estimation procedures for hydrologic rainfall-runoff models: Correlated and heteroscedastic error cases
    • doi:10.1029/WR016i002p00430
    • Sorooshian, S. and Dracup, J. A.: Stochastic parameter estimation procedures for hydrologic rainfall-runoff models: Correlated and heteroscedastic error cases, Water Resour. Res., 16, 430-442, doi:10.1029/WR016i002p00430, 1980.
    • (1980) Water Resour. Res. , vol.16 , pp. 430-442
    • Sorooshian, S.1    Dracup, J.A.2
  • 35
    • 0142000477 scopus 로고    scopus 로고
    • Differential Evolution - A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces
    • Storn, R. and Price, K.: Differential evolution a simple and efficient heuristic for global optimization over continuous spaces, Global Optimization, 11, pp. 341-359, 1997. (Pubitemid 127502202)
    • (1997) Journal of Global Optimization , vol.11 , Issue.4 , pp. 341-359
    • Storn, R.1    Price, K.2
  • 36
    • 33745603720 scopus 로고    scopus 로고
    • A Markov Chain Monte Carlo version of the genetic algorithm Differential Evolution: Easy Bayesian computing for real parameter spaces
    • DOI 10.1007/s11222-006-8769-1
    • Ter Braak, C. J. F.: A Markov chain Monte Carlo version of the genetic algorithm differential evolution: Easy Bayesian computing for real parameter spaces, Stat. Comput., 16, 239-249, 2006. (Pubitemid 43992692)
    • (2006) Statistics and Computing , vol.16 , Issue.3 , pp. 239-249
    • Ter Braak, C.J.F.1
  • 37
    • 33745603720 scopus 로고    scopus 로고
    • Differential evolution Markov chain with snooker updater and fewer chains
    • doi:10.1007/s11222-008-9104-9
    • Ter Braak, C. J. F. and Vrugt, J. A.: Differential evolution Markov chain with snooker updater and fewer chains, Stat. Comput., 16, 239-249, doi:10.1007/s11222-008-9104-9, 2008.
    • (2008) Stat. Comput. , vol.16 , pp. 239-249
    • Ter Braak, C.J.F.1    Vrugt, J.A.2
  • 38
    • 0019057216 scopus 로고
    • A closed-form equation for predicting the hydraulic conductivity of unsaturated soils
    • van Genuchten, M. Th.: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Sci. Soc. Am. J., 44, 892-898, 1980.
    • (1980) Soil Sci. Soc. Am.J. , vol.44 , pp. 892-898
    • Van Genuchten, M.T.1
  • 39
    • 0036998958 scopus 로고    scopus 로고
    • Toward improved identifiability of hydrologic model parameters: The information content of experimental data
    • doi:10.1029/2001WR001118
    • Vrugt, J. A., Bouten,W., Gupta, H. V., and Sorooshian, S.: Toward improved identifiability of hydrologic model parameters: The information content of experimental data, Water Resour. Res., 38, 1312, doi:10.1029/2001WR001118, 2002.
    • (2002) Water Resour. Res. , vol.38 , pp. 1312
    • Vrugt, J.A.1    Bouten, W.2    Gupta, H.V.3    Sorooshian, S.4
  • 40
    • 1542757127 scopus 로고    scopus 로고
    • A shuffled complex evolution metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters
    • doi:10.1029/2002WR001642
    • Vrugt, J. A., Gupta, H. V., Bouten, W., and Sorooshian, S.: A shuffled complex evolution metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters, Water Resour. Res., 39, 1-14, doi:10.1029/2002WR001642, 2003.
    • (2003) Water Resour. Res. , vol.39 , pp. 1-14
    • Vrugt, J.A.1    Gupta, H.V.2    Bouten, W.3    Sorooshian, S.4
  • 41
    • 57049099445 scopus 로고    scopus 로고
    • Treatment of input uncertainty in hydrologic modeling: Doing hydrology backward with Markov chain Monte Carlo simulation
    • doi:10.1029/2007WR006720
    • Vrugt, J. A., ter Braak, C. J. F., Clark, M. P., Hyman, J. M., and Robinson, B. A.: Treatment of input uncertainty in hydrologic modeling: Doing hydrology backward with Markov chain Monte Carlo simulation,Water Resour. Res., 44, W00B09, doi:10.1029/2007WR006720, 2008.
    • (2008) Water Resour. Res. , vol.44
    • Vrugt, J.A.1    Ter Braak, C.J.F.2    Clark, M.P.3    Hyman, J.M.4    Robinson, B.A.5
  • 42
    • 65349141143 scopus 로고    scopus 로고
    • Accelerating Markov chain Monte Carlo simulation by differential evolution with selfadaptive randomized subspace sampling
    • Vrugt, J. A., ter Braak, C. J. F., Diks, C. G. H., Higdon, D., Robinson, B. A., and Hyman, J. M.: Accelerating Markov chain Monte Carlo simulation by differential evolution with selfadaptive randomized subspace sampling, I. J. Nonlin. Sci. Num., 10, 271-288, 2009a.
    • (2009) I. J. Nonlin. Sci. Num. , vol.10 , pp. 271-288
    • Vrugt, J.A.1    Ter Braak, C.J.F.2    Diks, C.G.H.3    Higdon, D.4    Robinson, B.A.5    Hyman, J.M.6
  • 43
    • 70349739462 scopus 로고    scopus 로고
    • Equifinality of formal (DREAM) and informal (GLUE) Bayesian approaches in hydrologic modeling?
    • doi:10.1007/s00477-008-0274-y
    • Vrugt, J. A., ter Braak, C. J. F., Gupta, H. V., and Robinson, B. A.: Equifinality of formal (DREAM) and informal (GLUE) Bayesian approaches in hydrologic modeling?, Stoch. Env. Res. Risk A., 23, 1011-1026, doi:10.1007/s00477-008-0274-y, 2009b.
    • (2009) Stoch. Env. Res. Risk A. , vol.23 , pp. 1011-1026
    • Vrugt, J.A.1    Ter Braak, C.J.F.2    Gupta, H.V.3    Robinson, B.A.4
  • 44
    • 83755191987 scopus 로고    scopus 로고
    • Differential evolution adaptive Metropolis with sampling from past states
    • in preparation
    • Vrugt, J. A., Laloy, E., and ter Braak, C. J. F.: Differential evolution adaptive Metropolis with sampling from past states, SIAM J. Optimiz., in preparation, 2011.
    • (2011) SIAM J. Optimiz.
    • Vrugt, J.A.1    Laloy, E.2    Ter Braak, C.J.F.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.