메뉴 건너뛰기




Volumn 12, Issue , 2011, Pages

Supervised Regularized Canonical Correlation Analysis: Integrating histologic and proteomic measurements for predicting biochemical recurrence following prostate surgery

Author keywords

[No Author keywords available]

Indexed keywords

CANONICAL CORRELATION ANALYSIS; CLASSIFICATION ACCURACY; CLASSIFICATION RESULTS; COMPUTATIONAL CHALLENGES; COMPUTATIONALLY EFFICIENT; PARTIAL LEAST SQUARES REGRESSION; RANDOM FOREST CLASSIFIER; STATISTICAL TECHNIQUES;

EID: 83655203485     PISSN: None     EISSN: 14712105     Source Type: Journal    
DOI: 10.1186/1471-2105-12-483     Document Type: Article
Times cited : (36)

References (71)
  • 1
    • 79957990380 scopus 로고    scopus 로고
    • Computer-aided prognosis: Predicting patient and disease outcome via quantitative fusion of multi-scale, multi-modal data
    • Madabhushi A, Agner S, Basavanhally A, Doyle S, Lee G. Computer-aided prognosis: Predicting patient and disease outcome via quantitative fusion of multi-scale, multi-modal data. CMIG 2011,
    • (2011) CMIG
    • Madabhushi, A.1    Agner, S.2    Basavanhally, A.3    Doyle, S.4    Lee, G.5
  • 3
    • 80055047045 scopus 로고    scopus 로고
    • Multi-Modal Data Fusion Schemes for Integrated Classification of Imaging and Non-imaging Biomedical Data
    • Tiwari P, Viswanath S, Lee G, Madabhush A. Multi-Modal Data Fusion Schemes for Integrated Classification of Imaging and Non-imaging Biomedical Data. ISBI 2011, 165-168.
    • (2011) ISBI , pp. 165-168
    • Tiwari, P.1    Viswanath, S.2    Lee, G.3    Madabhush, A.4
  • 5
    • 70449434839 scopus 로고    scopus 로고
    • A knowledge representation framework for integration, classification of multi-scale imaging and non-imaging data: Preliminary results in predicting prostate cancer recurrence by fusing mass spectrometry and histology
    • Lee G, Monaco J, Doyle S, Masters S, Feldman M, Tomaszewski J, Madabhushi A. A knowledge representation framework for integration, classification of multi-scale imaging and non-imaging data: Preliminary results in predicting prostate cancer recurrence by fusing mass spectrometry and histology. ISBI 2009, 77-80.
    • (2009) ISBI , pp. 77-80
    • Lee, G.1    Monaco, J.2    Doyle, S.3    Masters, S.4    Feldman, M.5    Tomaszewski, J.6    Madabhushi, A.7
  • 6
    • 44349171667 scopus 로고    scopus 로고
    • A consensus embedding approach for segmentation of high resolution in vivo prostate magnetic resonance imagery
    • 69150U
    • Viswanath S, Rosen M, Madabhushi A. A consensus embedding approach for segmentation of high resolution in vivo prostate magnetic resonance imagery. SPIE Med Imag 2008, 6915(1). 69150U.
    • (2008) SPIE Med Imag , vol.6915 , Issue.1
    • Viswanath, S.1    Rosen, M.2    Madabhushi, A.3
  • 7
    • 84870915433 scopus 로고    scopus 로고
    • Semi Supervised Multi Kernel (SeSMiK) Graph Embedding: Identifying Aggressive Prostate Cancer via Magnetic Resonance Imaging and Spectroscopy
    • Tiwari P, Kurhanewicz J, Rosen M, Madabhushi A. Semi Supervised Multi Kernel (SeSMiK) Graph Embedding: Identifying Aggressive Prostate Cancer via Magnetic Resonance Imaging and Spectroscopy. MICCAI 2010, 6363:666-673.
    • (2010) MICCAI , vol.6363 , pp. 666-673
    • Tiwari, P.1    Kurhanewicz, J.2    Rosen, M.3    Madabhushi, A.4
  • 10
    • 33750975917 scopus 로고    scopus 로고
    • Support vector machine learning from heterogeneous data: an empirical analysis using protein sequence and structure
    • 10.1093/bioinformatics/btl475, 16966363
    • Lewis DP, Jebara T, Noble WS. Support vector machine learning from heterogeneous data: an empirical analysis using protein sequence and structure. Bioinformatics 2006, 22(22):2753-2760. 10.1093/bioinformatics/btl475, 16966363.
    • (2006) Bioinformatics , vol.22 , Issue.22 , pp. 2753-2760
    • Lewis, D.P.1    Jebara, T.2    Noble, W.S.3
  • 11
    • 10044285992 scopus 로고    scopus 로고
    • Canonical correlation analysis: an overview with application to learning methods
    • 10.1162/0899766042321814, 15516276
    • Hardoon DR, Szedmak S, Shawe-Taylor J. Canonical correlation analysis: an overview with application to learning methods. Neural Comput 2004, 16(12):2639-2664. 10.1162/0899766042321814, 15516276.
    • (2004) Neural Comput , vol.16 , Issue.12 , pp. 2639-2664
    • Hardoon, D.R.1    Szedmak, S.2    Shawe-Taylor, J.3
  • 14
    • 24644433110 scopus 로고    scopus 로고
    • On the Regularization of Canonical Correlation Analysis
    • Bie TD, Moor BD. On the Regularization of Canonical Correlation Analysis. ICA 2003 2003,
    • (2003) ICA 2003
    • Bie, T.D.1    Moor, B.D.2
  • 15
    • 1242338180 scopus 로고    scopus 로고
    • A canonical correlation neural network for multicollinearity and functional data
    • 10.1016/j.neunet.2003.07.002, 15036345
    • Gou Z, Fyfe C. A canonical correlation neural network for multicollinearity and functional data. Neural Networks 2004, 17(2):285-293. 10.1016/j.neunet.2003.07.002, 15036345.
    • (2004) Neural Networks , vol.17 , Issue.2 , pp. 285-293
    • Gou, Z.1    Fyfe, C.2
  • 16
    • 0000158808 scopus 로고
    • The Non-Singularity of Generalized Sample Covariance Matrices
    • Eaton ML, Perlman MD. The Non-Singularity of Generalized Sample Covariance Matrices. The Annals of Statictics 1973, 1(4):710-717.
    • (1973) The Annals of Statictics , vol.1 , Issue.4 , pp. 710-717
    • Eaton, M.L.1    Perlman, M.D.2
  • 17
    • 84942484786 scopus 로고
    • Ridge Regression: Biased Estimation for Nonorthogonal Problems
    • Hoerl AE, Kennard RW. Ridge Regression: Biased Estimation for Nonorthogonal Problems. Technometrics 1970, 12:55-67.
    • (1970) Technometrics , vol.12 , pp. 55-67
    • Hoerl, A.E.1    Kennard, R.W.2
  • 21
  • 22
    • 58149421595 scopus 로고
    • Analysis of a complex of statistical variables into principal components
    • Hotelling H. Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology 1933, 24(7):498-520.
    • (1933) Journal of Educational Psychology , vol.24 , Issue.7 , pp. 498-520
    • Hotelling, H.1
  • 24
    • 84899721963 scopus 로고    scopus 로고
    • Multimodal Wavelet Embedding Representation for data Combination (MaWERiC): Integrating Magnetic Resonance Imaging and Spectroscopy for Prostate Cancer Detection
    • Tiwari P, Kurhanewicz J, Viswanath S, Sridhar A, Madabhushi A. Multimodal Wavelet Embedding Representation for data Combination (MaWERiC): Integrating Magnetic Resonance Imaging and Spectroscopy for Prostate Cancer Detection. NMR in Biomedicine 2011,
    • (2011) NMR in Biomedicine
    • Tiwari, P.1    Kurhanewicz, J.2    Viswanath, S.3    Sridhar, A.4    Madabhushi, A.5
  • 27
    • 0035003725 scopus 로고    scopus 로고
    • PSA doubling time as a predictor of clinical progression after biochemical failure following radical prostatectomy for prostate cancer
    • 10.4065/76.6.576, 11393495
    • Roberts SG, Blute ML, Bergstralh EJ, Slezak JM, Zincke H. PSA doubling time as a predictor of clinical progression after biochemical failure following radical prostatectomy for prostate cancer. Mayo Clinic Proceedings 2001, 76(6):576-81. 10.4065/76.6.576, 11393495.
    • (2001) Mayo Clinic Proceedings , vol.76 , Issue.6 , pp. 576-581
    • Roberts, S.G.1    Blute, M.L.2    Bergstralh, E.J.3    Slezak, J.M.4    Zincke, H.5
  • 29
    • 4344595486 scopus 로고    scopus 로고
    • Extended and saturation needle biopsy for the diagnosis of prostate cancer
    • 10.1007/s11934-004-0041-7, 15161572
    • Chrouser K, Lieber M. Extended and saturation needle biopsy for the diagnosis of prostate cancer. Current Urology Reports 2004, 5:226-230. 10.1007/s11934-004-0041-7, 15161572.
    • (2004) Current Urology Reports , vol.5 , pp. 226-230
    • Chrouser, K.1    Lieber, M.2
  • 30
    • 34748891779 scopus 로고    scopus 로고
    • Detection of prostate cancer via biopsy in the medicare-seer population during the PSA era
    • 10.1093/jnci/djm119, 17848671
    • Welch H, Fisher E, Gottlieb D, Barry M. Detection of prostate cancer via biopsy in the medicare-seer population during the PSA era. Journal of the National Cancer Institute 2007, 99:1395-1400. 10.1093/jnci/djm119, 17848671.
    • (2007) Journal of the National Cancer Institute , vol.99 , pp. 1395-1400
    • Welch, H.1    Fisher, E.2    Gottlieb, D.3    Barry, M.4
  • 31
    • 33846817288 scopus 로고    scopus 로고
    • Global and targeted quantitative proteomics for biomarker discovery
    • Veenstra TD. Global and targeted quantitative proteomics for biomarker discovery. Journal of Chromatography B 2007, 847:3-11.
    • (2007) Journal of Chromatography B , vol.847 , pp. 3-11
    • Veenstra, T.D.1
  • 33
    • 0030333147 scopus 로고    scopus 로고
    • The clinical usefulness of percent free-PSA
    • Partin AW, Oesterling JE. The clinical usefulness of percent free-PSA. Urology 1996, 48:1-3.
    • (1996) Urology , vol.48 , pp. 1-3
    • Partin, A.W.1    Oesterling, J.E.2
  • 34
    • 0013890366 scopus 로고
    • Classification of prostatic carcinomas
    • Gleason DF. Classification of prostatic carcinomas. Cancer Chemother Rep 1966, 50:125-128.
    • (1966) Cancer Chemother Rep , vol.50 , pp. 125-128
    • Gleason, D.F.1
  • 36
    • 20444421889 scopus 로고    scopus 로고
    • Gleason grading of prostate cancer in needle biopsies or radical prostatectomy specimens: contemporary approach, current clinical significance and sources of pathology discrepancies
    • 10.1111/j.1464-410X.2005.05540.x, 15877724
    • Montironi R, Mazzuccheli R, Scarpelli M, Lopez-Beltran A, Fellegara G, Algaba F. Gleason grading of prostate cancer in needle biopsies or radical prostatectomy specimens: contemporary approach, current clinical significance and sources of pathology discrepancies. BJU International 2005, 95(8):1146-1152. 10.1111/j.1464-410X.2005.05540.x, 15877724.
    • (2005) BJU International , vol.95 , Issue.8 , pp. 1146-1152
    • Montironi, R.1    Mazzuccheli, R.2    Scarpelli, M.3    Lopez-Beltran, A.4    Fellegara, G.5    Algaba, F.6
  • 38
    • 0034694681 scopus 로고    scopus 로고
    • Patterns of prostate cancer biopsy grading: Trends and clinical implications
    • King CR. Patterns of prostate cancer biopsy grading: Trends and clinical implications. International Journal of Cancer 2000, 90(6):305-311.
    • (2000) International Journal of Cancer , vol.90 , Issue.6 , pp. 305-311
    • King, C.R.1
  • 41
    • 3242791771 scopus 로고    scopus 로고
    • Limitations Of Biopsy Gleason Grade: Implications For Counseling Patients With Biopsy Gleason Score 6 Prostate Cancer
    • 10.1097/01.ju.0000132135.18093.d6, 15201746
    • Sved PD, Gomez P, Manoharan M, Kim SS, Soloway MS. Limitations Of Biopsy Gleason Grade: Implications For Counseling Patients With Biopsy Gleason Score 6 Prostate Cancer. The Journal Of Urology 2004, 172:98-102. 10.1097/01.ju.0000132135.18093.d6, 15201746.
    • (2004) The Journal Of Urology , vol.172 , pp. 98-102
    • Sved, P.D.1    Gomez, P.2    Manoharan, M.3    Kim, S.S.4    Soloway, M.S.5
  • 42
    • 78650334799 scopus 로고    scopus 로고
    • Application of proteomic technologies for prostate cancer detection, prognosis, and tailored therapy
    • 10.3109/10408363.2010.503558, 20858067
    • Fredolini C, Liotta LA, Petricoin EF. Application of proteomic technologies for prostate cancer detection, prognosis, and tailored therapy. Critical Reviews in Clinical Laboratory Sciences 2010, 47(3):125-138. 10.3109/10408363.2010.503558, 20858067.
    • (2010) Critical Reviews in Clinical Laboratory Sciences , vol.47 , Issue.3 , pp. 125-138
    • Fredolini, C.1    Liotta, L.A.2    Petricoin, E.F.3
  • 43
    • 33646170190 scopus 로고    scopus 로고
    • Proteomics for the identification of new prostate cancer biomarkers
    • 10.1016/j.urolonc.2005.11.035, 16678055
    • Ornstein DK, Tyson DR. Proteomics for the identification of new prostate cancer biomarkers. Urologic Oncology: Seminars and Original Investigations 2006, 24(3):231-236. 10.1016/j.urolonc.2005.11.035, 16678055.
    • (2006) Urologic Oncology: Seminars and Original Investigations , vol.24 , Issue.3 , pp. 231-236
    • Ornstein, D.K.1    Tyson, D.R.2
  • 47
    • 80055018711 scopus 로고    scopus 로고
    • Histopathological variables and biomarkers enhancer of zeste homologue 2, Ki-67 and minichromosome maintenance protein 7 as prognosticators in primarily endocrine-treated prostate cancer
    • Tolonen TT, Tammela TL, Kujala PM, Tuominen VJ, Isola JJ, Visakorpi T. Histopathological variables and biomarkers enhancer of zeste homologue 2, Ki-67 and minichromosome maintenance protein 7 as prognosticators in primarily endocrine-treated prostate cancer. BJU International 2011,
    • (2011) BJU International
    • Tolonen, T.T.1    Tammela, T.L.2    Kujala, P.M.3    Tuominen, V.J.4    Isola, J.J.5    Visakorpi, T.6
  • 48
    • 34047168538 scopus 로고    scopus 로고
    • A Unified Approach to PCA, PLS, MLR and CCA
    • Tech. rep., Report LiTH-ISY-R-1992, ISY, SE-581 83 Linkoping, Sweden
    • Borga M, Landelius T, Knutsson H. A Unified Approach to PCA, PLS, MLR and CCA. 1997, Tech. rep., Report LiTH-ISY-R-1992, ISY, SE-581 83 Linkoping, Sweden.
    • (1997)
    • Borga, M.1    Landelius, T.2    Knutsson, H.3
  • 51
    • 0000107975 scopus 로고
    • Relations between two sets of variants
    • Hotelling H. Relations between two sets of variants. Biometrika 1936, 28:321-377.
    • (1936) Biometrika , vol.28 , pp. 321-377
    • Hotelling, H.1
  • 52
    • 56449106936 scopus 로고    scopus 로고
    • A least squares formulation for canonical correlation analysis
    • Sun L, Ji S, Ye J. A least squares formulation for canonical correlation analysis. ICML 2008, 33:1024-1031.
    • (2008) ICML , vol.33 , pp. 1024-1031
    • Sun, L.1    Ji, S.2    Ye, J.3
  • 53
    • 0001318292 scopus 로고
    • Canonical ridge and econometrics of joint production
    • Vinod HD. Canonical ridge and econometrics of joint production. Journal of Econometrics 1976, 4(2):147-166.
    • (1976) Journal of Econometrics , vol.4 , Issue.2 , pp. 147-166
    • Vinod, H.D.1
  • 55
    • 33845413755 scopus 로고    scopus 로고
    • Regularized linear discriminant analysis and its application in microarrays
    • Guo Y, Hastie T, Tibshirani R. Regularized linear discriminant analysis and its application in microarrays. Biostatistics 2007, 8:86-100.
    • (2007) Biostatistics , vol.8 , pp. 86-100
    • Guo, Y.1    Hastie, T.2    Tibshirani, R.3
  • 57
    • 33746489367 scopus 로고    scopus 로고
    • An assessment of recently published gene expression data analyses: reporting experimental design and statistical factors
    • 10.1186/1472-6947-6-27, 1523197, 16790051
    • Jafari P, Azuaje F. An assessment of recently published gene expression data analyses: reporting experimental design and statistical factors. BMC Medical Informatics and Decision Making 2006, 6:27. 10.1186/1472-6947-6-27, 1523197, 16790051.
    • (2006) BMC Medical Informatics and Decision Making , vol.6 , pp. 27
    • Jafari, P.1    Azuaje, F.2
  • 58
    • 0034911875 scopus 로고    scopus 로고
    • An efficient and robust statistical modeling approach to discover differentially expressed genes using genomic expression profiles
    • 10.1101/gr.165101, 311075, 11435405
    • Thomas JG, Olson JM, Tapscott SJ, Zhao LP. An efficient and robust statistical modeling approach to discover differentially expressed genes using genomic expression profiles. Genome Res 2001, 11:1227-1236. 10.1101/gr.165101, 311075, 11435405.
    • (2001) Genome Res , vol.11 , pp. 1227-1236
    • Thomas, J.G.1    Olson, J.M.2    Tapscott, S.J.3    Zhao, L.P.4
  • 59
    • 0036738906 scopus 로고    scopus 로고
    • Determination of minimum sample size and discriminatory expression patterns in microarray data
    • 10.1093/bioinformatics/18.9.1184, 12217910
    • Hwang D, Schmitt WA, Stephanopoulos G, Stephanopoulos G. Determination of minimum sample size and discriminatory expression patterns in microarray data. Bioinformatics 2002, 18:1184-1193. 10.1093/bioinformatics/18.9.1184, 12217910.
    • (2002) Bioinformatics , vol.18 , pp. 1184-1193
    • Hwang, D.1    Schmitt, W.A.2    Stephanopoulos, G.3    Stephanopoulos, G.4
  • 63
    • 67349266694 scopus 로고    scopus 로고
    • Universal sample preparation method for proteome analysis
    • 10.1038/nmeth.1322, 19377485
    • Wisniewski JR, Zougman A, Nagaraj N, Mann M. Universal sample preparation method for proteome analysis. Nature Methods 2009, 6(5):359-362. 10.1038/nmeth.1322, 19377485.
    • (2009) Nature Methods , vol.6 , Issue.5 , pp. 359-362
    • Wisniewski, J.R.1    Zougman, A.2    Nagaraj, N.3    Mann, M.4
  • 64
    • 34548183872 scopus 로고    scopus 로고
    • Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips
    • 10.1038/nprot.2007.261, 17703201
    • Rappsilber J, Mann M, Ishihama Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nature Protocols 2007, 2(8):1896-1906. 10.1038/nprot.2007.261, 17703201.
    • (2007) Nature Protocols , vol.2 , Issue.8 , pp. 1896-1906
    • Rappsilber, J.1    Mann, M.2    Ishihama, Y.3
  • 71
    • 77955208756 scopus 로고    scopus 로고
    • Predicting Classifier Performance With a Small Training Set: Applications to Computer-Aided Diagnosis and Prognosis
    • IEEE, Rotterdam, NL: IEEE
    • Basavanhally A, Doyle S, Madabhushi A. Predicting Classifier Performance With a Small Training Set: Applications to Computer-Aided Diagnosis and Prognosis. IEEE International Symposium on Biomedical Imaging (ISBI) 2010, 229-232. IEEE, Rotterdam, NL: IEEE.
    • (2010) IEEE International Symposium on Biomedical Imaging (ISBI) , pp. 229-232
    • Basavanhally, A.1    Doyle, S.2    Madabhushi, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.