메뉴 건너뛰기




Volumn 45, Issue 4, 2012, Pages 1659-1670

Phase congruency-based detection of circular objects applied to analysis of phytoplankton images

Author keywords

Detection of circular objects; Phase congruency; Phytoplankton images; Random forests; Stochastic optimization; SVM

Indexed keywords

CIRCULAR OBJECTS; PHASE CONGRUENCY; RANDOM FORESTS; STOCHASTIC OPTIMIZATION; SVM;

EID: 83655167142     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2011.10.019     Document Type: Article
Times cited : (45)

References (47)
  • 3
    • 12344329734 scopus 로고    scopus 로고
    • Real-time observation of taxa-specific plankton distributions: An optical sampling method
    • C.S. Davis, Q. Hu, S.M. Gallager, X. Tang, and C.J. Ashjian Real-time observation of taxa-specific plankton distributions: an optical sampling method Marine Ecology Progress Series 284 2004 77 96 (Pubitemid 40118207)
    • (2004) Marine Ecology Progress Series , vol.284 , pp. 77-96
    • Davis, C.S.1    Hu, Q.2    Gallager, S.M.3    Tang, X.4    Ashjian, C.J.5
  • 4
    • 22744443593 scopus 로고    scopus 로고
    • Automatic plankton image recognition with co-occurrence matrices and Support Vector Machine
    • Q. Hu, and C. Davis Automatic plankton image recognition with co-occurrence matrices and support vector machine Marine Ecology Progress Series 295 2005 21 31 (Pubitemid 41026807)
    • (2005) Marine Ecology Progress Series , vol.295 , pp. 21-31
    • Hu, Q.1    Davis, C.2
  • 6
    • 0027576716 scopus 로고
    • Morphological grayscale reconstruction in image analysis: Applications and efficient algorithms
    • DOI 10.1109/83.217222
    • L. Vincent Morphological grayscale reconstruction in image analysis: application and efficient algorithm IEEE Transactions on Image Processing 2 1993 176 201 (Pubitemid 23692871)
    • (1993) IEEE Transactions on Image Processing , vol.2 , Issue.2 , pp. 176-201
    • Vincent Luc1
  • 7
    • 0025489075 scopus 로고
    • The self-organizing map
    • T. Kohonen The self-organizing map Proceedings of the IEEE 78 9 1990 1461 1480
    • (1990) Proceedings of the IEEE , vol.78 , Issue.9 , pp. 1461-1480
    • Kohonen, T.1
  • 9
    • 34247582309 scopus 로고    scopus 로고
    • Increasing the discrimination power of the co-occurrence matrix-based features
    • DOI 10.1016/j.patcog.2006.12.004, PII S0031320306005176
    • A. Gelzinis, A. Verikas, and M. Bacauskiene Increasing the discrimination power of the co-occurrence matrix-based features Pattern Recognition 40 9 2007 2367 2372 (Pubitemid 46669581)
    • (2007) Pattern Recognition , vol.40 , Issue.9 , pp. 2367-2372
    • Gelzinis, A.1    Verikas, A.2    Bacauskiene, M.3
  • 11
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • DOI 10.1023/A:1010933404324
    • L. Breiman Random forests Machine Learning 45 2001 5 32 (Pubitemid 32933532)
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 12
    • 77958064179 scopus 로고    scopus 로고
    • Mining data with random forests: A survey and results of new tests
    • A. Verikas, A. Gelzinis, and M. Bacauskiene Mining data with random forests: a survey and results of new tests Pattern Recognition 44 2 2011 330 349
    • (2011) Pattern Recognition , vol.44 , Issue.2 , pp. 330-349
    • Verikas, A.1    Gelzinis, A.2    Bacauskiene, M.3
  • 13
    • 3042783402 scopus 로고    scopus 로고
    • Enumeration, measurement, and identification of net zooplankton samples using the ZOOSCAN digital imaging system
    • DOI 10.1016/j.icesjms.2004.03.012, PII S1054313904000402
    • P. Grosjean, M. Picheral, C. Warembourg, and G. Gorsky Enumeration, measurement, and identification of net zooplankton samples using the ZOOSCAN digital imaging system ICES Journal of Marine Science 61 2004 518 525 (Pubitemid 38851909)
    • (2004) ICES Journal of Marine Science , vol.61 , Issue.4 , pp. 518-525
    • Grosjean, P.1    Picheral, M.2    Warembourg, C.3    Gorsky, G.4
  • 16
    • 56749132219 scopus 로고    scopus 로고
    • Assessment of ZooImage as a tool for the classification of zooplankton
    • J.L. Bell, and R.R. Hopcroft Assessment of ZooImage as a tool for the classification of zooplankton Journal of Plankton Research 30 12 2008 1351 1367
    • (2008) Journal of Plankton Research , vol.30 , Issue.12 , pp. 1351-1367
    • Bell, J.L.1    Hopcroft, R.R.2
  • 17
    • 57749190980 scopus 로고    scopus 로고
    • Spring zooplankton distribution in the Bay of Biscay from 1998 to 2006 in relation with anchovy recruitment
    • X. Irigoien, J.A. Fernandes, P. Grosjean, K. Denis, A. Albaina, and M. Santos Spring zooplankton distribution in the Bay of Biscay from 1998 to 2006 in relation with anchovy recruitment Journal of Plankton Research 31 1 2009 1 17
    • (2009) Journal of Plankton Research , vol.31 , Issue.1 , pp. 1-17
    • Irigoien, X.1    Fernandes, J.A.2    Grosjean, P.3    Denis, K.4    Albaina, A.5    Santos, M.6
  • 18
    • 32644452632 scopus 로고    scopus 로고
    • Accurate automatic quantification of taxa-specific plankton abundance using dual classification with correction
    • Q. Hu, and C. Davis Accurate automatic quantification of taxa-specific plankton abundance using dual classification with correction Marine Ecology Progress Series 306 2006 51 61 (Pubitemid 43241561)
    • (2006) Marine Ecology Progress Series , vol.306 , pp. 51-61
    • Hu, Q.1    Davis, C.2
  • 21
    • 77952551651 scopus 로고    scopus 로고
    • Binary SIPPER plankton image classification using random subspace
    • F. Zhao, F. Lin, and H.S. Seah Binary SIPPER plankton image classification using random subspace Neurocomputing 73 2010 1853 1860
    • (2010) Neurocomputing , vol.73 , pp. 1853-1860
    • Zhao, F.1    Lin, F.2    Seah, H.S.3
  • 23
    • 0001385426 scopus 로고
    • The autonomous image analyzer: Enumeration, measurement and identification of marine phytoplankton
    • G. Gorsky, P. Guilbert, and E. Valenta The autonomous image analyzer: enumeration, measurement and identification of marine phytoplankton Marine Ecology Progress Series 58 1989 133 142
    • (1989) Marine Ecology Progress Series , vol.58 , pp. 133-142
    • Gorsky, G.1    Guilbert, P.2    Valenta, E.3
  • 24
    • 44649101375 scopus 로고    scopus 로고
    • Automated taxonomic classification of phytoplankton sampled with imaging-in-flow cytometry
    • H.M. Sosik, and R.J. Olson Automated taxonomic classification of phytoplankton sampled with imaging-in-flow cytometry Limnology and Oceanography: Methods 5 2007 204 216 (Pubitemid 351773988)
    • (2007) Limnology and Oceanography: Methods , vol.5 , Issue.JUN , pp. 204-216
    • Sosik, H.M.1    Olson, R.J.2
  • 25
    • 0037792037 scopus 로고    scopus 로고
    • Automated counting of phytoplankton by pattern recognition: A comparison with a manual counting method
    • DOI 10.1093/plankt/25.6.669
    • K.V. Embleton, C.E. Gibson, and S.I. Heaney Automated counting of phytoplankton by pattern recognition: a comparison with a manual counting method Journal of Plankton Research 25 6 2003 669 681 (Pubitemid 36720190)
    • (2003) Journal of Plankton Research , vol.25 , Issue.6 , pp. 669-681
    • Embleton, K.V.1    Gibson, C.E.2    Heaney, S.I.3
  • 29
    • 21744460252 scopus 로고    scopus 로고
    • Committees, collectives and individuals: Expert visual classification by neural network
    • R. Ellis, R. Simpson, P.F. Culverhouse, and T. Parisini Committees, collectives and individuals: expert visual classification by neural network Neural Computing & Applications 5 2 1997 99 105
    • (1997) Neural Computing & Applications , vol.5 , Issue.2 , pp. 99-105
    • Ellis, R.1    Simpson, R.2    Culverhouse, P.F.3    Parisini, T.4
  • 30
    • 33748627689 scopus 로고    scopus 로고
    • Automatic analysis of aqueous specimens for phytoplankton structure recognition and population estimation
    • DOI 10.1002/jemt.20338
    • K. Rodenacker, B. Hense, U. Tting, and P. Gais Automatic analysis of aqueous specimens for phytoplankton structure recognition and population estimation Microscopy Research and Technique 69 2006 708 720 (Pubitemid 44380009)
    • (2006) Microscopy Research and Technique , vol.69 , Issue.9 , pp. 708-720
    • Rodenacker, K.1    Hense, B.2    Jutting, U.3    Gais, P.4
  • 31
    • 44649084943 scopus 로고    scopus 로고
    • A submersible imaging-in-flow instrument to analyze nano- and microplankton: Imaging FlowCytobot
    • R.J. Olson, and H.M. Sosik A submersible imaging-in-flow instrument to analyze nano and microplankton: imaging FlowCytobot Limnology and Oceanography: Methods 5 2007 195 203 (Pubitemid 351773987)
    • (2007) Limnology and Oceanography: Methods , vol.5 , Issue.JUN , pp. 195-203
    • Olson, R.J.1    Sosik, H.M.2
  • 32
    • 0035816160 scopus 로고    scopus 로고
    • Estimating the taxonomic composition of a sample when individuals are classified with error
    • A. Solow, C. Davis, and Q. Hu Estimating the taxonomic composition of a sample when individuals are classified with error Marine Ecology Progress Series 216 2001 309 311 (Pubitemid 32731504)
    • (2001) Marine Ecology Progress Series , vol.216 , pp. 309-311
    • Solow, A.1    Davis, C.2    Hu, Q.3
  • 33
    • 11844253892 scopus 로고    scopus 로고
    • Prorocentrum minimum bloom and its possible link to a massive fish kill in Bolinao, Pangasinan, Northern Philippines
    • DOI 10.1016/j.hal.2004.08.006, PII S1568988304000848, Ecology and Physiology of Prorocentrum Minimum
    • R.V. Azanzaa, Y. Fukuyob, L.G. Yapa, and H. Takayama Prorocentrum minimum bloom and its possible link to a massive fish kill in Bolinao, Pangasinan, Northern Philippines Harmful Algae 4 2005 519 524 (Pubitemid 40084867)
    • (2005) Harmful Algae , vol.4 , Issue.3 , pp. 519-524
    • Azanza, R.V.1    Fukuyo, Y.2    Yap, L.G.3    Takayama, H.4
  • 34
    • 11844294096 scopus 로고    scopus 로고
    • Impacts and potential effects due to Prorocentrum minimum blooms in Chesapeake Bay
    • DOI 10.1016/j.hal.2004.08.014, PII S156898830400085X, Ecology and Physiology of Prorocentrum Minimum
    • P.J. Tango, R. Magnien, W. Butler, R. Lacouture, K. Sellner, M.L.P. Glibert, C. Poukish, and C. Luckett Characterization of impacts and potential effects due to Prorocentrum minimum blooms in Chesapeake Bay Harmful Algae 4 2005 525 531 (Pubitemid 40084868)
    • (2005) Harmful Algae , vol.4 , Issue.3 , pp. 525-531
    • Tango, P.J.1    Magnien, R.2    Butler, W.3    Luckett, C.4    Luckenbach, M.5    Lacouture, R.6    Poukish, C.7
  • 37
    • 0034567795 scopus 로고    scopus 로고
    • Phase congruency: A low-level image invariant
    • P. Kovesi Phase congruency: a low-level image invariant Psychological Research 64 2000 136 148
    • (2000) Psychological Research , vol.64 , pp. 136-148
    • Kovesi, P.1
  • 40
    • 58249093836 scopus 로고    scopus 로고
    • A feature selection technique for generation of classification committees and its application to categorization of laryngeal images
    • M. Bacauskiene, A. Verikas, A. Gelzinis, and D. Valincius A feature selection technique for generation of classification committees and its application to categorization of laryngeal images Pattern Recognition 42 5 2009 645 654
    • (2009) Pattern Recognition , vol.42 , Issue.5 , pp. 645-654
    • Bacauskiene, M.1    Verikas, A.2    Gelzinis, A.3    Valincius, D.4
  • 41
    • 77957833232 scopus 로고    scopus 로고
    • Fusion of multi-focus images using differential evolution algorithm
    • V. Aslantas, and R. Kurban Fusion of multi-focus images using differential evolution algorithm Expert Systems with Applications 37 12 2010 8861 8870
    • (2010) Expert Systems with Applications , vol.37 , Issue.12 , pp. 8861-8870
    • Aslantas, V.1    Kurban, R.2
  • 42
    • 84937655864 scopus 로고
    • Visual pattern recognition by moment invariants
    • M.K. Hu Visual pattern recognition by moment invariants IRE Transactions on Information Theory IT-8 1962 179 187
    • (1962) IRE Transactions on Information Theory , vol.IT-8 , pp. 179-187
    • Hu, M.K.1
  • 43
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • DOI 10.1023/A:1012487302797
    • I. Guyon, J. Weston, S. Barnhill, and V. Vapnik Gene selection for cancer classification using support vector machines Machine Learning 46 2002 389 422 (Pubitemid 34129977)
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.