메뉴 건너뛰기




Volumn 1, Issue , 2011, Pages 1-4

The research of pattern recognition of gear pump based on EMD and KPCA-SVM

Author keywords

empirical mode decomposition (EMD); kernel principal component analysis (KPCA); pattern recognition; support vector machines (SVM)

Indexed keywords

ANALYSIS RESULTS; DIMENSIONLESS PARAMETERS; EMPIRICAL MODE DECOMPOSITION; EMPIRICAL MODE DECOMPOSITION METHOD; END EFFECTS; FEATURE VECTORS; INTRINSIC MODE FUNCTIONS; KERNEL PRINCIPAL COMPONENT; KERNEL PRINCIPAL COMPONENT ANALYSIS; MECHANICAL EQUIPMENT; NON-STATIONARY VIBRATION SIGNALS; OUTPUT SIGNAL; PUMP VIBRATIONS; SUPPORT VECTOR;

EID: 83455218629     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICSSEM.2011.6081165     Document Type: Conference Paper
Times cited : (4)

References (9)
  • 1
    • 42549123026 scopus 로고    scopus 로고
    • Rough kernel principal component analysis and its application to fault feature extraction
    • Mar.
    • J. H. Hu, S. S. Xie, S. L. Hou, C. Wang, and F. Yang. "Rough kernel principal component analysis and its application to fault feature extraction". Journal of Vibration and Shock, vol. 27, pp.50-54, Mar. 2008.
    • (2008) Journal of Vibration and Shock , vol.27 , pp. 50-54
    • Hu, J.H.1    Xie, S.S.2    Hou, S.L.3    Wang, C.4    Yang, F.5
  • 3
    • 0011749119 scopus 로고    scopus 로고
    • Mirror extending and circular spline function for empirical mode decomposition method
    • July
    • J. P. Zhao and D. J. Huang. "Mirror extending and circular spline function for empirical mode decomposition method". Journal of Zhejiang University, vol.2, pp.247-252, July 2001.
    • (2001) Journal of Zhejiang University , vol.2 , pp. 247-252
    • Zhao, J.P.1    Huang, D.J.2
  • 4
    • 36349015298 scopus 로고    scopus 로고
    • A self-adaptive method dealing with the end issue of EMD
    • Oct.
    • C. X. Shao, J. Wang, J. F. Fan, M. Yang, and Z. C. Wang. "A self-adaptive method dealing with the end issue of EMD". Acta Electronica Sinica, vo1.35, pp.1944-1948, Oct. 2007,.
    • (2007) Acta Electronica Sinica , vol.35 , pp. 1944-1948
    • Shao, C.X.1    Wang, J.2    Fan, J.F.3    Yang, M.4    Wang, Z.C.5
  • 5
    • 67649438650 scopus 로고    scopus 로고
    • Fault diagnosis method based on empirical mode decomposition and support vector machine
    • Z. X. Shen, X. Y Huang, and X. X. Ma. "Fault diagnosis method based on empirical mode decomposition and support vector machine". Control and Decision, vo1.24, pp.889-891, 2009.
    • (2009) Control and Decision , vol.24 , pp. 889-891
    • Shen, Z.X.1    Huang, X.Y.2    Ma, X.X.3
  • 6
    • 59249106913 scopus 로고    scopus 로고
    • A support vector machine model for contractor prequalification
    • K. C. Lam, E. Palaneeswaran, and C. Y. Yu. "A support vector machine model for contractor prequalification". Automation in Construction, 2009, pp.321-329.
    • (2009) Automation in Construction , pp. 321-329
    • Lam, K.C.1    Palaneeswaran, E.2    Yu, C.Y.3
  • 7
    • 67651048670 scopus 로고    scopus 로고
    • The study of equipment degradation state recognition method based on KPCA-HSMM
    • Jun.
    • Q. H. Zeng, J Qiu, G. J Liu, and Q. Miao. "The study of equipment degradation state recognition method based on KPCA-HSMM". Acta Armamentii, vol.30, pp. 741-742, Jun. 2009.
    • (2009) Acta Armamentii , vol.30 , pp. 741-742
    • Zeng, Q.H.1    Qiu, J.2    Liu, G.J.3    Miao, Q.4
  • 9
    • 58249083168 scopus 로고    scopus 로고
    • Choosing the kernel parameters for support vector machines by the inter-cluster distance in the feature space
    • P. W. Kuo and D. W. Sheng. "Choosing the kernel parameters for support vector machines by the inter-cluster distance in the feature space". Pattern Recognition, no.42, pp.710-717, 2009.
    • (2009) Pattern Recognition , Issue.42 , pp. 710-717
    • Kuo, P.W.1    Sheng, D.W.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.