메뉴 건너뛰기




Volumn 2639, Issue , 2003, Pages 430-436

Knowledge based descriptive neural networks

Author keywords

[No Author keywords available]

Indexed keywords

FUZZY SETS; GRANULAR COMPUTING; KNOWLEDGE BASED SYSTEMS; NEURAL NETWORKS; ROUGH SET THEORY; MATHEMATICAL MODELS;

EID: 8344248721     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/3-540-39205-x_72     Document Type: Conference Paper
Times cited : (8)

References (19)
  • 1
    • 0029484103 scopus 로고
    • Survey and critique of techniques for extracting rules from trained artificial neural networks
    • [1] R. Andrews, J. Diederich, & A. Tickle, “Survey and critique of techniques for extracting rules from trained artificial neural networks”, Knowledge Based Systems, 8(6), 373–389, 1995.
    • (1995) Knowledge Based Systems , vol.8 , Issue.6 , pp. 373-389
    • Andrews, R.1    Diederich, J.2    Tickle, A.3
  • 3
    • 21844488118 scopus 로고
    • Rule Extraction: From Neural Architecture to Symbolic Representation
    • [3] G. A. Carpenter & A.W. Tan, “Rule Extraction: From Neural Architecture to Symbolic Representation”, Connection Science, 7(1), pp3–27, 1995.
    • (1995) Connection Science , vol.7 , Issue.1 , pp. 3-27
    • Carpenter, G.A.1    Tan, A.W.2
  • 4
    • 0141578371 scopus 로고    scopus 로고
    • A new methodology of extraction, optimization and application of crisp and fuzzy logical rules
    • [4] W. Duch, R. Adamczak & K. Grabczewski, “A new methodology of extraction, optimization and application of crisp and fuzzy logical rules”, IEEE Trans Neural Networks, 11(2), 1–31, 2000.
    • (2000) IEEE Trans Neural Networks , vol.11 , Issue.2 , pp. 1-31
    • Duch, W.1    Adamczak, R.2    Grabczewski, K.3
  • 6
    • 0026923902 scopus 로고
    • On Fuzzy Modeling Using Fuzzy Neural Networks with the Backpropagation Algorithm
    • [6] S. Horikawa, et. al, “On Fuzzy Modeling Using Fuzzy Neural Networks with the Backpropagation Algorithm”, IEEE Trans Neural Networks, 3, 801–806, 1992.
    • (1992) IEEE Trans Neural Networks , vol.3 , pp. 801-806
    • Horikawa, S.1    Al, E.2
  • 7
    • 0035659641 scopus 로고    scopus 로고
    • On-line learning, reasoning, rule extraction and aggregation in locally optimised evolving fuzzy neural networks
    • [7] N. Kasabov, “On-line learning, reasoning, rule extraction and aggregation in locally optimised evolving fuzzy neural networks”, Neurocomputing, 41 (1–4), 25–45, 2001.
    • (2001) Neurocomputing , vol.41 , Issue.1-4 , pp. 25-45
    • Kasabov, N.1
  • 8
    • 0036127265 scopus 로고    scopus 로고
    • Data mining in soft computing framework: A survey
    • [8] S. Mitra, S. K. Pal and P. Mitra, “Data mining in soft computing framework: A survey”, IEEE Trans Neural Networks, 13, 3–14, 2002.
    • (2002) IEEE Trans Neural Networks , vol.13 , pp. 3-14
    • Mitra, S.1    Pal, S.K.2    Mitra, P.3
  • 9
    • 0031270628 scopus 로고    scopus 로고
    • A Partial Order for the M-of-N Rule Extraction Algorithm
    • [9] F Maire, “A Partial Order for the M-of-N Rule Extraction Algorithm”, IEEE Trans Neural Networks, 8(6), 1542–1544, 1997.
    • (1997) IEEE Trans Neural Networks , vol.8 , Issue.6 , pp. 1542-1544
    • Maire, F.1
  • 10
    • 0030356238 scopus 로고    scopus 로고
    • Actively searching for an effective neural-network ensemble
    • [10] D. Opitz & J. Shavlik, “Actively searching for an effective neural-network ensemble”, Connection Science, 8, 1996, 337–353.
    • (1996) Connection Science , vol.8 , pp. 337-353
    • Opitz, D.1    Shavlik, J.2
  • 11
    • 0000832680 scopus 로고
    • Stock Performance Modeling Using Neural Networks: A Comparative Study with Regression Models
    • [11] A. N. Refenes, A. Zapranis, and G. Francis, “Stock Performance Modeling Using Neural Networks: A Comparative Study with Regression Models”, Neural Network, 5, 961–970 1994.
    • (1994) Neural Network , vol.5 , pp. 961-970
    • Refenes, A.N.1    Zapranis, A.2    Francis, G.3
  • 12
    • 0033751611 scopus 로고    scopus 로고
    • Extracting M-of-N Rules From Trained Neural Networks’
    • [12] R. Setiono, “Extracting M-of-N Rules From Trained Neural Networks”, IEEE Trans Neural Networks, 11(2), 512–519, 2000.
    • (2000) IEEE Trans Neural Networks , vol.11 , Issue.2 , pp. 512-519
    • Setiono, R.1
  • 13
    • 85150197299 scopus 로고
    • Extracting rules from artificial neural networks with distributed representations
    • Tesauro, G.; Touretzky, D.; and Leen, T., eds., 7. Cambridge, MA: MIT Press
    • [13] S. Thrun, “Extracting rules from artificial neural networks with distributed representations.” In Tesauro, G.; Touretzky, D.; and Leen, T., eds., Advances in Neural Information Processing Systems (NIPS) 7. Cambridge, MA: MIT Press, pp.505–512, 1995.
    • (1995) Advances in Neural Information Processing Systems (NIPS) , pp. 505-512
    • Thrun, S.1
  • 14
    • 0032208720 scopus 로고    scopus 로고
    • The Truth Will Come To Light: Directions and Challenges in Extracting the Knowledge Embedded Within Trained Artificial Neural Networks
    • [14] A. Tickle, R. Andrews, M. Golea & J. Diederich, “The Truth Will Come To Light: Directions and Challenges in Extracting the Knowledge Embedded Within Trained Artificial Neural Networks”, IEEE Trans Neural Networks 9(6), 1057–1068, 1998.
    • (1998) IEEE Trans Neural Networks , vol.9 , Issue.6 , pp. 1057-1068
    • Tickle, A.1    Andrews, R.2    Golea, M.3    Diederich, J.4
  • 15
    • 0000243355 scopus 로고
    • Learning in Artificial Neural Networks: A Statistical Perspective
    • [15] H. White, “Learning in Artificial Neural Networks: A Statistical Perspective”, Neural Computation, 1, 425–465, 1989.
    • (1989) Neural Computation , vol.1 , pp. 425-465
    • White, H.1
  • 16
    • 0034283989 scopus 로고    scopus 로고
    • A Case Study on Using Neural Networks to Perform Technical Forecasting of Forex
    • [16] J. T. Yao, C. L. Tan, “A Case Study on Using Neural Networks to Perform Technical Forecasting of Forex”, Neurocomputing, 34(1–4), 79–98, 2000.
    • (2000) Neurocomputing , vol.34 , Issue.1-4 , pp. 79-98
    • Yao, J.T.1    Tan, C.L.2
  • 18
    • 0035163419 scopus 로고    scopus 로고
    • On Modeling data mining with granular computing
    • [18] Y.Y. Yao “On Modeling data mining with granular computing”, Proceedings of COMPSAC 2001, pp.638–643, 2001.
    • (2001) Proceedings of COMPSAC 2001 , pp. 638-643
    • Yao, Y.Y.1
  • 19
    • 0011796122 scopus 로고    scopus 로고
    • The roles of fuzzy logic and soft computing in the conception, design and deployment of intelligent systems
    • H. S. Nwana and N. Azarmi (Eds), Concepts and Applications, Springer Verlag
    • [19] L. A. Zadeh, “The roles of fuzzy logic and soft computing in the conception, design and deployment of intelligent systems”, H. S. Nwana and N. Azarmi (Eds), Software Agents and Soft Computing: Towards Enhancing Machine Intelligence, Concepts and Applications, Springer Verlag, 1997, pp183–190.
    • (1997) Software Agents and Soft Computing: Towards Enhancing Machine Intelligence , pp. 183-190
    • Zadeh, L.A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.