메뉴 건너뛰기




Volumn , Issue , 2011, Pages 765-774

Natural event summarization

Author keywords

event summarization; minimum description length; wavelet transformation

Indexed keywords

CORRELATION PATTERNS; EVENT MINING; EVENT PATTERN; EVENT SEQUENCE; EVENT SUMMARIZATION; MINIMUM DESCRIPTION LENGTH; MINIMUM DESCRIPTION LENGTH PRINCIPLE; MULTI-RESOLUTIONS; NATURAL EVENTS; PERIODIC PATTERN; PROBLEM SPACE; SYNTHETIC AND REAL DATA; SYSTEM BEHAVIORS; TEMPORAL INFORMATION; TEMPORAL RELATIONSHIPS; WAVELET TRANSFORMATIONS;

EID: 83055191297     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2063576.2063688     Document Type: Conference Paper
Times cited : (26)

References (30)
  • 2
    • 0029212693 scopus 로고
    • Mining sequential patterns
    • R. Agrawal and R. Srikant. Mining sequential patterns. In ICDE, 1995.
    • (1995) ICDE
    • Agrawal, R.1    Srikant, R.2
  • 3
    • 83055177149 scopus 로고    scopus 로고
    • One graph is worth a thousand logs: Uncovering hidden structures in massive system event logs
    • M. Aharon, G. Barash, I. Cohen, and E. Mordechai. One graph is worth a thousand logs: Uncovering hidden structures in massive system event logs. In PKDD, 2009.
    • (2009) PKDD
    • Aharon, M.1    Barash, G.2    Cohen, I.3    Mordechai, E.4
  • 4
    • 34250967631 scopus 로고
    • Theorie der orghogonalen funktionensysteme
    • Haar A.Zur. Theorie der orghogonalen funktionensysteme. Mathematische, 69:pp331-371, 1910.
    • (1910) Mathematische , vol.69 , pp. 331-371
    • Zur, H.A.1
  • 5
    • 84976668743 scopus 로고
    • Algorithm 457: Finding all cliques of an undirected graph
    • C. Bron and J. Kerbosch. Algorithm 457: finding all cliques of an undirected graph. Communications of the ACM, 16:575-577, 1973.
    • (1973) Communications of the ACM , vol.16 , pp. 575-577
    • Bron, C.1    Kerbosch, J.2
  • 6
    • 0036604863 scopus 로고    scopus 로고
    • On measuring the distance between histograms
    • DOI 10.1016/S0031-3203(01)00118-2, PII S0031320301001182
    • S. Cha and S.N. Srihari. On measuring the distance between histograms. Pattern Recognition, 35:1355-1370, 2002. (Pubitemid 34262340)
    • (2002) Pattern Recognition , vol.35 , Issue.6 , pp. 1355-1370
    • Cha, S.-H.1    Srihari, S.N.2
  • 7
    • 0002758989 scopus 로고    scopus 로고
    • Mining surprising patterns using temporal description length
    • S. Chakrabarti, S. Sarawagi, and B. Dom. Mining surprising patterns using temporal description length. In VLDB, 1998.
    • (1998) VLDB
    • Chakrabarti, S.1    Sarawagi, S.2    Dom, B.3
  • 8
    • 0032688141 scopus 로고    scopus 로고
    • Efficient time series matching by wavelets
    • K. Chan and A. Fu. Efficient time series matching by wavelets. In ICDE, 1999.
    • (1999) ICDE
    • Chan, K.1    Fu, A.2
  • 9
    • 0242456820 scopus 로고    scopus 로고
    • Pattern discovery in sequences under a markov assumption
    • D. Chudova and P. Smyth. Pattern discovery in sequences under a markov assumption. In KDD, 2002.
    • (2002) KDD
    • Chudova, D.1    Smyth, P.2
  • 10
    • 0027652468 scopus 로고
    • Substructure discovery using minimum description length and background knowledge
    • D.J. Cook and L.B. Holder. Substructure discovery using minimum description length and background knowledge. Journal of Artificial Intelligence Research, 1:231-255, 1994.
    • (1994) Journal of Artificial Intelligence Research , vol.1 , pp. 231-255
    • Cook, D.J.1    Holder, L.B.2
  • 14
    • 65449159832 scopus 로고    scopus 로고
    • Constructing comprehensive summaries of large event sequences
    • J. Kiernan and E. Terzi. Constructing comprehensive summaries of large event sequences. In KDD, 2008.
    • (2008) KDD
    • Kiernan, J.1    Terzi, E.2
  • 17
    • 52649161757 scopus 로고    scopus 로고
    • Trajectory outlier detection: A partition-and-detect framework
    • J.G. Lee, J. Han, and X. Li. Trajectory outlier detection: A partition-and-detect framework. In ICDE, 2008.
    • (2008) ICDE
    • Lee, J.G.1    Han, J.2    Li, X.3
  • 18
    • 1542417183 scopus 로고    scopus 로고
    • A survey on wavelet applications in data mining
    • T. Li, Q. Li, S. Zhu, and M. Ogihara. A survey on wavelet applications in data mining. ACM SIGKDD Explorations, 4:pp49-68, 2002.
    • (2002) ACM SIGKDD Explorations , vol.4 , pp. 49-68
    • Li, T.1    Li, Q.2    Zhu, S.3    Ogihara, M.4
  • 19
    • 33749573847 scopus 로고    scopus 로고
    • An integrated framework on mining logs files for computing system management
    • T. Li, F. Liang, S. Ma, and W. Peng. An integrated framework on mining logs files for computing system management. In KDD, 2005.
    • (2005) KDD
    • Li, T.1    Liang, F.2    Ma, S.3    Peng, W.4
  • 20
    • 0034998533 scopus 로고    scopus 로고
    • Mining partially periodic event patterns with unknown periods
    • S. Ma and J.L. Hellerstein. Mining partially periodic event patterns with unknown periods. In ICDE, 2001.
    • (2001) ICDE
    • Ma, S.1    Hellerstein, J.L.2
  • 21
    • 0035789281 scopus 로고    scopus 로고
    • Finding simple intensive description from event sequence data
    • H. Mannila and M. Salmenkivi. Finding simple intensive description from event sequence data. In KDD, 2001.
    • (2001) KDD
    • Mannila, H.1    Salmenkivi, M.2
  • 22
    • 36549030808 scopus 로고    scopus 로고
    • A minimum description length objective function for groupwise non-rigid image registration
    • S. Marsland, C. J. Twining, and C.J. Taylor. A minimum description length objective function for groupwise non-rigid image registration. In Image and Vision Computing, 2008.
    • (2008) Image and Vision Computing
    • Marsland, S.1    Twining, C.J.2    Taylor, C.J.3
  • 24
    • 83055188858 scopus 로고    scopus 로고
    • Event summarization for system management
    • W. Peng, C. Perng, T. Li, and H. Wang. Event summarization for system management. In KDD, 2008.
    • (2008) KDD
    • Peng, W.1    Perng, C.2    Li, T.3    Wang, H.4
  • 25
    • 77954736323 scopus 로고    scopus 로고
    • An algorithmic approach to event summarization
    • W. Peng, H. Wang, M. Liu, and W. Wang. An algorithmic approach to event summarization. In SIGMOD, 2010.
    • (2010) SIGMOD
    • Peng, W.1    Wang, H.2    Liu, M.3    Wang, W.4
  • 26
    • 32444440579 scopus 로고    scopus 로고
    • Data-driven validation, completion and construction of event relationship networks
    • C. Perng, D. Thoenen, G. Grabarnik, S. Ma, and J. Hellerstein. Data-driven validation, completion and construction of event relationship networks. In KDD, 2003.
    • (2003) KDD
    • Perng, C.1    Thoenen, D.2    Grabarnik, G.3    Ma, S.4    Hellerstein, J.5
  • 27
    • 0036206371 scopus 로고    scopus 로고
    • Similarity search over time-series data using wavelets
    • I. Popivanov and R.J. Miller. Similarity search over time-series data using wavelets. In ICDE, 2002.
    • (2002) ICDE
    • Popivanov, I.1    Miller, R.J.2
  • 28
    • 0034133653 scopus 로고    scopus 로고
    • Wavecluster: A wavelet-based clustering approach for spatial data in very large databases
    • G. Sheikholeslami, S. Chartterjee, and Aidong Zhang. Wavecluster: a wavelet-based clustering approach for spatial data in very large databases. VLDB Journal, 8, 2000.
    • (2000) VLDB Journal , vol.8
    • Sheikholeslami, G.1    Chartterjee, S.2    Zhang, A.3
  • 29
    • 0025545690 scopus 로고
    • Finding natural clusters having minimum description length
    • R.S. Wallace and T. Kanade. Finding natural clusters having minimum description length. In Pattern Recognition, 1990.
    • (1990) Pattern Recognition
    • Wallace, R.S.1    Kanade, T.2
  • 30
    • 83055184917 scopus 로고    scopus 로고
    • An mdl approach to efficiently discover communities in bipartite network
    • K. Xu, C. Tang, C. Li, Y. Jiang, and R. Tang. An mdl approach to efficiently discover communities in bipartite network. In DASFAA, 2010.
    • (2010) DASFAA
    • Xu, K.1    Tang, C.2    Li, C.3    Jiang, Y.4    Tang, R.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.