-
1
-
-
79956310954
-
The cryptochrome blue-light receptors
-
Yu X., et al. The cryptochrome blue-light receptors. Arabidopsis Book 2010, 8:e0135.
-
(2010)
Arabidopsis Book
, vol.8
-
-
Yu, X.1
-
2
-
-
79955584998
-
The cryptochromes: blue light photoreceptors in plants and animals
-
Chaves I., et al. The cryptochromes: blue light photoreceptors in plants and animals. Annu. Rev. Plant Biol. 2011, 62:335-364.
-
(2011)
Annu. Rev. Plant Biol.
, vol.62
, pp. 335-364
-
-
Chaves, I.1
-
3
-
-
36749003871
-
Separate functions for nuclear and cytoplasmic cryptochrome 1 during photomorphogenesis of Arabidopsis seedlings
-
Wu G., Spalding E.P. Separate functions for nuclear and cytoplasmic cryptochrome 1 during photomorphogenesis of Arabidopsis seedlings. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:18813-18818.
-
(2007)
Proc. Natl. Acad. Sci. U.S.A.
, vol.104
, pp. 18813-18818
-
-
Wu, G.1
Spalding, E.P.2
-
4
-
-
37249059866
-
Arabidopsis cryptochrome 2 completes its posttranslational life cycle in the nucleus
-
Yu X., et al. Arabidopsis cryptochrome 2 completes its posttranslational life cycle in the nucleus. Plant Cell 2007, 19:3146-3156.
-
(2007)
Plant Cell
, vol.19
, pp. 3146-3156
-
-
Yu, X.1
-
5
-
-
0037629260
-
An Arabidopsis protein closely related to Synechocystis cryptochrome is targeted to organelles
-
Kleine T., et al. An Arabidopsis protein closely related to Synechocystis cryptochrome is targeted to organelles. Plant J. 2003, 35:93-103.
-
(2003)
Plant J.
, vol.35
, pp. 93-103
-
-
Kleine, T.1
-
6
-
-
0027493250
-
HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor
-
Ahmad M., Cashmore A.R. HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor. Nature 1993, 366:162-166.
-
(1993)
Nature
, vol.366
, pp. 162-166
-
-
Ahmad, M.1
Cashmore, A.R.2
-
7
-
-
0032570771
-
Regulation of flowering time by Arabidopsis photoreceptors
-
Guo H., et al. Regulation of flowering time by Arabidopsis photoreceptors. Science 1998, 279:1360-1363.
-
(1998)
Science
, vol.279
, pp. 1360-1363
-
-
Guo, H.1
-
8
-
-
0032553569
-
Phytochromes and cryptochromes in the entrainment of the Arabidopsis circadian clock
-
Somers D.E., et al. Phytochromes and cryptochromes in the entrainment of the Arabidopsis circadian clock. Science 1998, 282:1488-1490.
-
(1998)
Science
, vol.282
, pp. 1488-1490
-
-
Somers, D.E.1
-
9
-
-
0034485824
-
Cryptochromes are required for phytochrome signaling to the circadian clock but not for rhythmicity
-
Devlin P.F., Kay S.A. Cryptochromes are required for phytochrome signaling to the circadian clock but not for rhythmicity. Plant Cell 2000, 12:2499-2510.
-
(2000)
Plant Cell
, vol.12
, pp. 2499-2510
-
-
Devlin, P.F.1
Kay, S.A.2
-
10
-
-
0035206131
-
Resetting of the circadian clock by phytochromes and cryptochromes in Arabidopsis
-
Yanovsky M.J., et al. Resetting of the circadian clock by phytochromes and cryptochromes in Arabidopsis. J. Biol. Rhythms 2001, 16:523-530.
-
(2001)
J. Biol. Rhythms
, vol.16
, pp. 523-530
-
-
Yanovsky, M.J.1
-
11
-
-
70849124035
-
Cryptochromes, phytochromes, and COP1 regulate light-controlled stomatal development in Arabidopsis
-
Kang C.Y., et al. Cryptochromes, phytochromes, and COP1 regulate light-controlled stomatal development in Arabidopsis. Plant Cell 2009, 21:2624-2641.
-
(2009)
Plant Cell
, vol.21
, pp. 2624-2641
-
-
Kang, C.Y.1
-
12
-
-
24744445152
-
A role for Arabidopsis cryptochromes and COP1 in the regulation of stomatal opening
-
Mao J., et al. A role for Arabidopsis cryptochromes and COP1 in the regulation of stomatal opening. Proc. Natl. Acad. Sci. U.S.A. 2005, 102:12270-12275.
-
(2005)
Proc. Natl. Acad. Sci. U.S.A.
, vol.102
, pp. 12270-12275
-
-
Mao, J.1
-
13
-
-
33748943849
-
Cryptochrome photoreceptors cry1 and cry2 antagonistically regulate primary root elongation in Arabidopsis thaliana
-
Canamero R.C., et al. Cryptochrome photoreceptors cry1 and cry2 antagonistically regulate primary root elongation in Arabidopsis thaliana. Planta 2006, 224:995-1003.
-
(2006)
Planta
, vol.224
, pp. 995-1003
-
-
Canamero, R.C.1
-
14
-
-
12444311794
-
Cryptochromes and phytochromes synergistically regulate Arabidopsis root greening under blue light
-
Usami T., et al. Cryptochromes and phytochromes synergistically regulate Arabidopsis root greening under blue light. Plant Cell Physiol. 2004, 45:1798-1808.
-
(2004)
Plant Cell Physiol.
, vol.45
, pp. 1798-1808
-
-
Usami, T.1
-
15
-
-
77950187934
-
Arabidopsis cryptochrome-1 restrains lateral roots growth by inhibiting auxin transport
-
Zeng J., et al. Arabidopsis cryptochrome-1 restrains lateral roots growth by inhibiting auxin transport. J. Plant Physiol. 2010, 167:670-673.
-
(2010)
J. Plant Physiol.
, vol.167
, pp. 670-673
-
-
Zeng, J.1
-
16
-
-
0035082420
-
Genetic dissection of blue-light sensing in tomato using mutants deficient in cryptochrome 1 and phytochromes A, B1 and B2
-
Weller J.L., et al. Genetic dissection of blue-light sensing in tomato using mutants deficient in cryptochrome 1 and phytochromes A, B1 and B2. Plant J. 2001, 25:427-440.
-
(2001)
Plant J.
, vol.25
, pp. 427-440
-
-
Weller, J.L.1
-
17
-
-
18744396696
-
Manipulation of the blue light photoreceptor cryptochrome 2 in tomato affects vegetative development, flowering time, and fruit antioxidant content
-
Giliberto L., et al. Manipulation of the blue light photoreceptor cryptochrome 2 in tomato affects vegetative development, flowering time, and fruit antioxidant content. Plant Physiol. 2005, 137:199-208.
-
(2005)
Plant Physiol.
, vol.137
, pp. 199-208
-
-
Giliberto, L.1
-
18
-
-
33644838294
-
Cryptochrome 1 contributes to blue-light sensing in pea
-
Platten J.D., et al. Cryptochrome 1 contributes to blue-light sensing in pea. Plant Physiol. 2005, 139:1472-1482.
-
(2005)
Plant Physiol.
, vol.139
, pp. 1472-1482
-
-
Platten, J.D.1
-
19
-
-
3242687144
-
Pleiotropic effects of the Arabidopsis cryptochrome 2 allelic variation underlie fruit trait-related QTL
-
El-Assal S.E., et al. Pleiotropic effects of the Arabidopsis cryptochrome 2 allelic variation underlie fruit trait-related QTL. Plant Biol. 2004, 6:370-374.
-
(2004)
Plant Biol.
, vol.6
, pp. 370-374
-
-
El-Assal, S.E.1
-
20
-
-
77952141945
-
Role of the phytochrome and cryptochrome signaling pathways in hypocotyl phototropism
-
Tsuchida-Mayama T., et al. Role of the phytochrome and cryptochrome signaling pathways in hypocotyl phototropism. Plant J. 2010, 62:653-662.
-
(2010)
Plant J.
, vol.62
, pp. 653-662
-
-
Tsuchida-Mayama, T.1
-
21
-
-
1442281536
-
Functional analysis of each blue light receptor, cry1, cry2, phot1, and phot2, by using combinatorial multiple mutants in Arabidopsis
-
Ohgishi M., et al. Functional analysis of each blue light receptor, cry1, cry2, phot1, and phot2, by using combinatorial multiple mutants in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 2004, 101:2223-2228.
-
(2004)
Proc. Natl. Acad. Sci. U.S.A.
, vol.101
, pp. 2223-2228
-
-
Ohgishi, M.1
-
22
-
-
38649105192
-
Phytochromes and cryptochromes regulate the differential growth of Arabidopsis hypocotyls in both a PGP19-dependent and a PGP19-independent manner
-
Nagashima A., et al. Phytochromes and cryptochromes regulate the differential growth of Arabidopsis hypocotyls in both a PGP19-dependent and a PGP19-independent manner. Plant J. 2008, 53:516-529.
-
(2008)
Plant J.
, vol.53
, pp. 516-529
-
-
Nagashima, A.1
-
23
-
-
0038715036
-
Second positive phototropism results from coordinated co-action of the phototropins and cryptochromes
-
Whippo C.W., Hangarter R.P. Second positive phototropism results from coordinated co-action of the phototropins and cryptochromes. Plant Physiol. 2003, 132:1499-1507.
-
(2003)
Plant Physiol.
, vol.132
, pp. 1499-1507
-
-
Whippo, C.W.1
Hangarter, R.P.2
-
24
-
-
48549083602
-
Distinct light-initiated gene expression and cell cycle programs in the shoot apex and cotyledons of Arabidopsis
-
Lopez-Juez E., et al. Distinct light-initiated gene expression and cell cycle programs in the shoot apex and cotyledons of Arabidopsis. Plant Cell 2008, 20:947-968.
-
(2008)
Plant Cell
, vol.20
, pp. 947-968
-
-
Lopez-Juez, E.1
-
25
-
-
33750957510
-
Cryptochrome-1-dependent execution of programmed cell death induced by singlet oxygen in Arabidopsis thaliana
-
Danon A., et al. Cryptochrome-1-dependent execution of programmed cell death induced by singlet oxygen in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:17036-17041.
-
(2006)
Proc. Natl. Acad. Sci. U.S.A.
, vol.103
, pp. 17036-17041
-
-
Danon, A.1
-
26
-
-
0033693838
-
Light quantity controls leaf-cell and chloroplast development in Arabidopsis thaliana wild type and blue-light-perception mutants
-
Weston E., et al. Light quantity controls leaf-cell and chloroplast development in Arabidopsis thaliana wild type and blue-light-perception mutants. Planta 2000, 211:807-815.
-
(2000)
Planta
, vol.211
, pp. 807-815
-
-
Weston, E.1
-
27
-
-
34447115720
-
Genome-wide gene expression analysis reveals a critical role for CRYPTOCHROME1 in the response of Arabidopsis to high irradiance
-
Kleine T., et al. Genome-wide gene expression analysis reveals a critical role for CRYPTOCHROME1 in the response of Arabidopsis to high irradiance. Plant Physiol. 2007, 144:1391-1406.
-
(2007)
Plant Physiol.
, vol.144
, pp. 1391-1406
-
-
Kleine, T.1
-
28
-
-
60249087338
-
Wheat cryptochromes: subcellular localization and involvement in photomorphogenesis and osmotic stress responses
-
Xu P., et al. Wheat cryptochromes: subcellular localization and involvement in photomorphogenesis and osmotic stress responses. Plant Physiol. 2009, 149:760-774.
-
(2009)
Plant Physiol.
, vol.149
, pp. 760-774
-
-
Xu, P.1
-
29
-
-
79960228657
-
Cryptochrome 1 and phytochrome B control shade-avoidance responses in Arabidopsis via partially independent hormonal cascades
-
Keller M.M., et al. Cryptochrome 1 and phytochrome B control shade-avoidance responses in Arabidopsis via partially independent hormonal cascades. Plant J. 2011, 67:195-207.
-
(2011)
Plant J.
, vol.67
, pp. 195-207
-
-
Keller, M.M.1
-
30
-
-
77952977571
-
CRYPTOCHROME 1 Is implicated in promoting R protein-mediated plant resistance to Pseudomonas syringae in Arabidopsis
-
Wu L., Yang H. CRYPTOCHROME 1 Is implicated in promoting R protein-mediated plant resistance to Pseudomonas syringae in Arabidopsis. Mol. Plant 2010, 3:539-548.
-
(2010)
Mol. Plant
, vol.3
, pp. 539-548
-
-
Wu, L.1
Yang, H.2
-
31
-
-
77955812148
-
Cryptochrome 2 and phototropin 2 regulate resistance protein-mediated viral defense by negatively regulating an E3 ubiquitin ligase
-
Jeong R.D., et al. Cryptochrome 2 and phototropin 2 regulate resistance protein-mediated viral defense by negatively regulating an E3 ubiquitin ligase. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:13538-13543.
-
(2010)
Proc. Natl. Acad. Sci. U.S.A.
, vol.107
, pp. 13538-13543
-
-
Jeong, R.D.1
-
32
-
-
0037249267
-
Identification of a new cryptochrome class. Structure, function, and evolution
-
Brudler R., et al. Identification of a new cryptochrome class. Structure, function, and evolution. Mol. Cell 2003, 11:59-67.
-
(2003)
Mol. Cell
, vol.11
, pp. 59-67
-
-
Brudler, R.1
-
33
-
-
33750713440
-
A cryptochrome/photolyase class of enzymes with single-stranded DNA-specific photolyase activity
-
Selby C.P., Sancar A. A cryptochrome/photolyase class of enzymes with single-stranded DNA-specific photolyase activity. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:17696-17700.
-
(2006)
Proc. Natl. Acad. Sci. U.S.A.
, vol.103
, pp. 17696-17700
-
-
Selby, C.P.1
Sancar, A.2
-
34
-
-
58549111388
-
Recognition and repair of UV lesions in loop structures of duplex DNA by DASH-type cryptochrome
-
Pokorny R., et al. Recognition and repair of UV lesions in loop structures of duplex DNA by DASH-type cryptochrome. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:21023-21027.
-
(2008)
Proc. Natl. Acad. Sci. U.S.A.
, vol.105
, pp. 21023-21027
-
-
Pokorny, R.1
-
35
-
-
54249127534
-
More than a repair enzyme: Aspergillus nidulans photolyase-like CryA is a regulator of sexual development
-
Bayram O., et al. More than a repair enzyme: Aspergillus nidulans photolyase-like CryA is a regulator of sexual development. Mol. Biol. Cell 2008, 19:3254-3262.
-
(2008)
Mol. Biol. Cell
, vol.19
, pp. 3254-3262
-
-
Bayram, O.1
-
36
-
-
67349187333
-
Diatom PtCPF1 is a new cryptochrome/photolyase family member with DNA repair and transcription regulation activity
-
Coesel S., et al. Diatom PtCPF1 is a new cryptochrome/photolyase family member with DNA repair and transcription regulation activity. EMBO Rep. 2009, 10:655-661.
-
(2009)
EMBO Rep.
, vol.10
, pp. 655-661
-
-
Coesel, S.1
-
37
-
-
0035146338
-
Photoreceptors in plant photomorphogenesis to date. five phytochromes, two cryptochromes, one phototropin, and one superchrome
-
Briggs W.R., Olney M.A. Photoreceptors in plant photomorphogenesis to date. five phytochromes, two cryptochromes, one phototropin, and one superchrome. Plant Physiol. 2001, 125:85-88.
-
(2001)
Plant Physiol.
, vol.125
, pp. 85-88
-
-
Briggs, W.R.1
Olney, M.A.2
-
38
-
-
0035853757
-
Blue light sensing in higher plants
-
Christie J.M., Briggs W.R. Blue light sensing in higher plants. J. Biol. Chem. 2001, 276:11457-11460.
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 11457-11460
-
-
Christie, J.M.1
Briggs, W.R.2
-
40
-
-
0141762747
-
Cryptochromes: enabling plants and animals to determine circadian time
-
Cashmore A.R. Cryptochromes: enabling plants and animals to determine circadian time. Cell 2003, 114:537-543.
-
(2003)
Cell
, vol.114
, pp. 537-543
-
-
Cashmore, A.R.1
-
41
-
-
0141480569
-
Cryptochrome structure and signal transduction
-
Lin C., Shalitin D. Cryptochrome structure and signal transduction. Annu. Rev. Plant Biol. 2003, 54:469-496.
-
(2003)
Annu. Rev. Plant Biol.
, vol.54
, pp. 469-496
-
-
Lin, C.1
Shalitin, D.2
-
42
-
-
0033786852
-
Cryptochrome: the second photoactive pigment in the eye and its role in circadian photoreception
-
Sancar A. Cryptochrome: the second photoactive pigment in the eye and its role in circadian photoreception. Annu. Rev. Biochem. 2000, 69:31-67.
-
(2000)
Annu. Rev. Biochem.
, vol.69
, pp. 31-67
-
-
Sancar, A.1
-
43
-
-
0038305458
-
Structure and function of DNA photolyase and cryptochrome blue-light photoreceptors
-
Sancar A. Structure and function of DNA photolyase and cryptochrome blue-light photoreceptors. Chem. Rev. 2003, 103:2203-2237.
-
(2003)
Chem. Rev.
, vol.103
, pp. 2203-2237
-
-
Sancar, A.1
-
44
-
-
33744587947
-
The cryptochromes
-
Lin C., Todo T. The cryptochromes. Genome Biol. 2005, 6:220.
-
(2005)
Genome Biol.
, vol.6
, pp. 220
-
-
Lin, C.1
Todo, T.2
-
45
-
-
0036275942
-
Blue light receptors and signal transduction
-
Lin C. Blue light receptors and signal transduction. Plant Cell 2002, 14:S207-S225.
-
(2002)
Plant Cell
, vol.14
-
-
Lin, C.1
-
46
-
-
78049313173
-
Searching for a photocycle of the cryptochrome photoreceptors
-
Liu B., et al. Searching for a photocycle of the cryptochrome photoreceptors. Curr. Opin. Plant Biol. 2010, 13:578-586.
-
(2010)
Curr. Opin. Plant Biol.
, vol.13
, pp. 578-586
-
-
Liu, B.1
-
47
-
-
0029127546
-
Association of flavin adenine dinucleotide with the Arabidopsis blue light receptor CRY1
-
Lin C., et al. Association of flavin adenine dinucleotide with the Arabidopsis blue light receptor CRY1. Science 1995, 269:968-970.
-
(1995)
Science
, vol.269
, pp. 968-970
-
-
Lin, C.1
-
48
-
-
0029061519
-
Putative blue-light photoreceptors from Arabidopsis thaliana and Sinapis alba with a high degree of sequence homology to DNA photolyase contain the two photolyase cofactors but lack DNA repair activity
-
Malhotra K., et al. Putative blue-light photoreceptors from Arabidopsis thaliana and Sinapis alba with a high degree of sequence homology to DNA photolyase contain the two photolyase cofactors but lack DNA repair activity. Biochemistry 1995, 34:6892-6899.
-
(1995)
Biochemistry
, vol.34
, pp. 6892-6899
-
-
Malhotra, K.1
-
49
-
-
34447525658
-
The signaling state of Arabidopsis cryptochrome 2 contains flavin semiquinone
-
Banerjee R., et al. The signaling state of Arabidopsis cryptochrome 2 contains flavin semiquinone. J. Biol. Chem. 2007, 282:14916-14922.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 14916-14922
-
-
Banerjee, R.1
-
50
-
-
33846596542
-
Cryptochrome 3 from Arabidopsis thaliana: structural and functional analysis of its complex with a folate light antenna
-
Klar T., et al. Cryptochrome 3 from Arabidopsis thaliana: structural and functional analysis of its complex with a folate light antenna. J. Mol. Biol. 2007, 366:954-964.
-
(2007)
J. Mol. Biol.
, vol.366
, pp. 954-964
-
-
Klar, T.1
-
51
-
-
34248152117
-
Cryptochrome blue light photoreceptors are activated through interconversion of flavin redox states
-
Bouly J.P., et al. Cryptochrome blue light photoreceptors are activated through interconversion of flavin redox states. J. Biol. Chem. 2007, 282:9383-9391.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 9383-9391
-
-
Bouly, J.P.1
-
52
-
-
21244502156
-
Light-induced electron transfer in Arabidopsis cryptochrome-1 correlates with in vivo function
-
Zeugner A., et al. Light-induced electron transfer in Arabidopsis cryptochrome-1 correlates with in vivo function. J. Biol. Chem. 2005, 280:19437-19440.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 19437-19440
-
-
Zeugner, A.1
-
53
-
-
79958762676
-
Light activated cryptochrome reacts with molecular oxygen to form a flavin-superoxide radical pair consistent with magnetoreception
-
Muller P., Ahmad M. Light activated cryptochrome reacts with molecular oxygen to form a flavin-superoxide radical pair consistent with magnetoreception. J. Biol. Chem. 2011, 286:21033-21040.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 21033-21040
-
-
Muller, P.1
Ahmad, M.2
-
54
-
-
34547116867
-
Formation and function of flavin anion radical in cryptochrome 1 blue-light photoreceptor of monarch butterfly
-
Song S.H., et al. Formation and function of flavin anion radical in cryptochrome 1 blue-light photoreceptor of monarch butterfly. J. Biol. Chem. 2007, 282:17608-17612.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 17608-17612
-
-
Song, S.H.1
-
55
-
-
41249100106
-
Animal type 1 cryptochromes. Analysis of the redox state of the flavin cofactor by site-directed mutagenesis
-
Ozturk N., et al. Animal type 1 cryptochromes. Analysis of the redox state of the flavin cofactor by site-directed mutagenesis. J. Biol. Chem. 2008, 283:3256-3263.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 3256-3263
-
-
Ozturk, N.1
-
56
-
-
76749083320
-
Animal cryptochromes mediate magnetoreception by an unconventional photochemical mechanism
-
Gegear R.J., et al. Animal cryptochromes mediate magnetoreception by an unconventional photochemical mechanism. Nature 2010, 463:804-807.
-
(2010)
Nature
, vol.463
, pp. 804-807
-
-
Gegear, R.J.1
-
57
-
-
45249083827
-
Ultrafast dynamics and anionic active states of the flavin cofactor in cryptochrome and photolyase
-
Kao Y.T., et al. Ultrafast dynamics and anionic active states of the flavin cofactor in cryptochrome and photolyase. J. Am. Chem. Soc. 2008, 130:7695-7701.
-
(2008)
J. Am. Chem. Soc.
, vol.130
, pp. 7695-7701
-
-
Kao, Y.T.1
-
58
-
-
4344702547
-
Structure of the photolyase-like domain of cryptochrome 1 from Arabidopsis thaliana
-
Brautigam C.A., et al. Structure of the photolyase-like domain of cryptochrome 1 from Arabidopsis thaliana. Proc. Natl. Acad. Sci. U.S.A. 2004, 101:12142-12147.
-
(2004)
Proc. Natl. Acad. Sci. U.S.A.
, vol.101
, pp. 12142-12147
-
-
Brautigam, C.A.1
-
59
-
-
0038375339
-
Novel ATP-binding and autophosphorylation activity associated with Arabidopsis and human cryptochrome-1
-
Bouly J.P., et al. Novel ATP-binding and autophosphorylation activity associated with Arabidopsis and human cryptochrome-1. Eur. J. Biochem. 2003, 270:2921-2928.
-
(2003)
Eur. J. Biochem.
, vol.270
, pp. 2921-2928
-
-
Bouly, J.P.1
-
60
-
-
0142092354
-
Blue light-dependent in vivo and in vitro phosphorylation of Arabidopsis cryptochrome 1
-
Shalitin D., et al. Blue light-dependent in vivo and in vitro phosphorylation of Arabidopsis cryptochrome 1. Plant Cell 2003, 15:2421-2429.
-
(2003)
Plant Cell
, vol.15
, pp. 2421-2429
-
-
Shalitin, D.1
-
61
-
-
33750686624
-
Analysis of autophosphorylating kinase activities of Arabidopsis and human cryptochromes
-
Ozgur S., Sancar A. Analysis of autophosphorylating kinase activities of Arabidopsis and human cryptochromes. Biochemistry 2006, 45:13369-13374.
-
(2006)
Biochemistry
, vol.45
, pp. 13369-13374
-
-
Ozgur, S.1
Sancar, A.2
-
62
-
-
0037071862
-
Regulation of Arabidopsis cryptochrome 2 by blue-light-dependent phosphorylation
-
Shalitin D., et al. Regulation of Arabidopsis cryptochrome 2 by blue-light-dependent phosphorylation. Nature 2002, 417:763-767.
-
(2002)
Nature
, vol.417
, pp. 763-767
-
-
Shalitin, D.1
-
63
-
-
67349147421
-
Conformational change induced by ATP binding correlates with enhanced biological function of Arabidopsis cryptochrome
-
Burney S., et al. Conformational change induced by ATP binding correlates with enhanced biological function of Arabidopsis cryptochrome. FEBS Lett. 2009, 583:1427-1433.
-
(2009)
FEBS Lett.
, vol.583
, pp. 1427-1433
-
-
Burney, S.1
-
64
-
-
14844355899
-
Role of structural plasticity in signal transduction by the cryptochrome blue-light photoreceptor
-
Partch C.L., et al. Role of structural plasticity in signal transduction by the cryptochrome blue-light photoreceptor. Biochemistry 2005, 44:3795-3805.
-
(2005)
Biochemistry
, vol.44
, pp. 3795-3805
-
-
Partch, C.L.1
-
65
-
-
0034703719
-
The C termini of Arabidopsis cryptochromes mediate a constitutive light response
-
Yang H.-Q., et al. The C termini of Arabidopsis cryptochromes mediate a constitutive light response. Cell 2000, 103:815-827.
-
(2000)
Cell
, vol.103
, pp. 815-827
-
-
Yang, H.-Q.1
-
66
-
-
0035543363
-
The signaling mechanism of Arabidopsis CRY1 involves direct interaction with COP1
-
Yang H.Q., et al. The signaling mechanism of Arabidopsis CRY1 involves direct interaction with COP1. Plant Cell 2001, 13:2573-2587.
-
(2001)
Plant Cell
, vol.13
, pp. 2573-2587
-
-
Yang, H.Q.1
-
67
-
-
0035812725
-
Direct interaction of Arabidopsis cryptochromes with COP1 in light control development
-
Wang H., et al. Direct interaction of Arabidopsis cryptochromes with COP1 in light control development. Science 2001, 294:154-158.
-
(2001)
Science
, vol.294
, pp. 154-158
-
-
Wang, H.1
-
68
-
-
34249862220
-
Derepression of the NC80 motif is critical for the photoactivation of Arabidopsis CRY2
-
Yu X., et al. Derepression of the NC80 motif is critical for the photoactivation of Arabidopsis CRY2. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:7289-7294.
-
(2007)
Proc. Natl. Acad. Sci. U.S.A.
, vol.104
, pp. 7289-7294
-
-
Yu, X.1
-
69
-
-
62549154533
-
Formation of nuclear bodies of Arabidopsis CRY2 in response to blue light is associated with its blue light-dependent degradation
-
Yu X., et al. Formation of nuclear bodies of Arabidopsis CRY2 in response to blue light is associated with its blue light-dependent degradation. Plant Cell 2009, 21:118-130.
-
(2009)
Plant Cell
, vol.21
, pp. 118-130
-
-
Yu, X.1
-
70
-
-
70350128135
-
AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation
-
Lamia K.A., et al. AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation. Science 2009, 326:437-440.
-
(2009)
Science
, vol.326
, pp. 437-440
-
-
Lamia, K.A.1
-
71
-
-
0037053314
-
The circadian regulatory proteins BMAL1 and cryptochromes are substrates of casein kinase Iepsilon
-
Eide E.J., et al. The circadian regulatory proteins BMAL1 and cryptochromes are substrates of casein kinase Iepsilon. J. Biol. Chem. 2002, 277:17248-17254.
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 17248-17254
-
-
Eide, E.J.1
-
72
-
-
0035875069
-
A role for the segment polarity gene shaggy/GSK-3 in the Drosophila circadian clock
-
Martinek S., et al. A role for the segment polarity gene shaggy/GSK-3 in the Drosophila circadian clock. Cell 2001, 105:769-779.
-
(2001)
Cell
, vol.105
, pp. 769-779
-
-
Martinek, S.1
-
73
-
-
24744436847
-
Ser-557-phosphorylated mCRY2 is degraded upon synergistic phosphorylation by glycogen synthase kinase-3 beta
-
Harada Y., et al. Ser-557-phosphorylated mCRY2 is degraded upon synergistic phosphorylation by glycogen synthase kinase-3 beta. J. Biol. Chem. 2005, 280:31714-31721.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 31714-31721
-
-
Harada, Y.1
-
74
-
-
4444227060
-
Serine phosphorylation of mCRY1 and mCRY2 by mitogen-activated protein kinase
-
Sanada K., et al. Serine phosphorylation of mCRY1 and mCRY2 by mitogen-activated protein kinase. Genes Cells 2004, 9:697-708.
-
(2004)
Genes Cells
, vol.9
, pp. 697-708
-
-
Sanada, K.1
-
75
-
-
0032004230
-
Chimeric proteins between cry1 and cry2 Arabidopsis blue light photoreceptors indicate overlapping functions and varying protein stability
-
Ahmad M., et al. Chimeric proteins between cry1 and cry2 Arabidopsis blue light photoreceptors indicate overlapping functions and varying protein stability. Plant Cell 1998, 10:197-208.
-
(1998)
Plant Cell
, vol.10
, pp. 197-208
-
-
Ahmad, M.1
-
76
-
-
0032478076
-
Enhancement of blue-light sensitivity of Arabidopsis seedlings by a blue light receptor cryptochrome 2
-
Lin C., et al. Enhancement of blue-light sensitivity of Arabidopsis seedlings by a blue light receptor cryptochrome 2. Proc. Natl. Acad. Sci. U.S.A. 1998, 95:2686-2690.
-
(1998)
Proc. Natl. Acad. Sci. U.S.A.
, vol.95
, pp. 2686-2690
-
-
Lin, C.1
-
77
-
-
57349088665
-
Photoexcited CRY2 interacts with CIB1 to regulate transcription and floral initiation in Arabidopsis
-
Liu H., et al. Photoexcited CRY2 interacts with CIB1 to regulate transcription and floral initiation in Arabidopsis. Science 2008, 322:1535-1539.
-
(2008)
Science
, vol.322
, pp. 1535-1539
-
-
Liu, H.1
-
78
-
-
34248525919
-
The after-hours mutant reveals a role for Fbxl3 in determining mammalian circadian period
-
Godinho S.I., et al. The after-hours mutant reveals a role for Fbxl3 in determining mammalian circadian period. Science 2007, 316:897-900.
-
(2007)
Science
, vol.316
, pp. 897-900
-
-
Godinho, S.I.1
-
79
-
-
34249097203
-
Circadian mutant Overtime reveals F-box protein FBXL3 regulation of cryptochrome and period gene expression
-
Siepka S.M., et al. Circadian mutant Overtime reveals F-box protein FBXL3 regulation of cryptochrome and period gene expression. Cell 2007, 129:1011-1023.
-
(2007)
Cell
, vol.129
, pp. 1011-1023
-
-
Siepka, S.M.1
-
80
-
-
34248566788
-
SCFFbxl3 controls the oscillation of the circadian clock by directing the degradation of cryptochrome proteins
-
Busino L., et al. SCFFbxl3 controls the oscillation of the circadian clock by directing the degradation of cryptochrome proteins. Science 2007, 316:900-904.
-
(2007)
Science
, vol.316
, pp. 900-904
-
-
Busino, L.1
-
81
-
-
59349113774
-
Light-dependent interactions between the Drosophila circadian clock factors cryptochrome, jetlag, and timeless
-
Peschel N., et al. Light-dependent interactions between the Drosophila circadian clock factors cryptochrome, jetlag, and timeless. Curr. Biol. 2009, 19:241-247.
-
(2009)
Curr. Biol.
, vol.19
, pp. 241-247
-
-
Peschel, N.1
-
82
-
-
44849083749
-
Identification of novel genes involved in light-dependent CRY degradation through a genome-wide RNAi screen
-
Sathyanarayanan S., et al. Identification of novel genes involved in light-dependent CRY degradation through a genome-wide RNAi screen. Genes Dev. 2008, 22:1522-1533.
-
(2008)
Genes Dev.
, vol.22
, pp. 1522-1533
-
-
Sathyanarayanan, S.1
-
83
-
-
0035542770
-
Light control of Arabidopsis development entails coordinated regulation of genome expression and cellular pathways
-
Ma L., et al. Light control of Arabidopsis development entails coordinated regulation of genome expression and cellular pathways. Plant Cell 2001, 13:2589-2607.
-
(2001)
Plant Cell
, vol.13
, pp. 2589-2607
-
-
Ma, L.1
-
84
-
-
0142134233
-
Genomic and physiological studies of early cryptochrome 1 action demonstrate roles for auxin and gibberellin in the control of hypocotyl growth by blue light
-
Folta K.M., et al. Genomic and physiological studies of early cryptochrome 1 action demonstrate roles for auxin and gibberellin in the control of hypocotyl growth by blue light. Plant J. 2003, 36:203-214.
-
(2003)
Plant J.
, vol.36
, pp. 203-214
-
-
Folta, K.M.1
-
85
-
-
67651004478
-
Synergism of red and blue light in the control of Arabidopsis gene expression and development
-
Sellaro R., et al. Synergism of red and blue light in the control of Arabidopsis gene expression and development. Curr. Biol. 2009, 19:1216-1220.
-
(2009)
Curr. Biol.
, vol.19
, pp. 1216-1220
-
-
Sellaro, R.1
-
86
-
-
33847241170
-
The quest for florigen: a review of recent progress
-
Corbesier L., Coupland G. The quest for florigen: a review of recent progress. J. Exp. Bot. 2006, 57:3395-3403.
-
(2006)
J. Exp. Bot.
, vol.57
, pp. 3395-3403
-
-
Corbesier, L.1
Coupland, G.2
-
87
-
-
79957454826
-
Blue light-dependent interaction of CRY2 with SPA1 regulates COP1 activity and floral initiation in Arabidopsis
-
Zuo Z., et al. Blue light-dependent interaction of CRY2 with SPA1 regulates COP1 activity and floral initiation in Arabidopsis. Curr. Biol. 2011, 21:841-847.
-
(2011)
Curr. Biol.
, vol.21
, pp. 841-847
-
-
Zuo, Z.1
-
88
-
-
79956325554
-
Arabidopsis cryptochrome 1 interacts with SPA1 to suppress COP1 activity in response to blue light
-
Liu B., et al. Arabidopsis cryptochrome 1 interacts with SPA1 to suppress COP1 activity in response to blue light. Genes Dev. 2011, 25:1029-1034.
-
(2011)
Genes Dev.
, vol.25
, pp. 1029-1034
-
-
Liu, B.1
-
89
-
-
79956331698
-
Blue-light-dependent interaction of cryptochrome 1 with SPA1 defines a dynamic signaling mechanism
-
Lian H.L., et al. Blue-light-dependent interaction of cryptochrome 1 with SPA1 defines a dynamic signaling mechanism. Genes Dev. 2011, 25:1023-1028.
-
(2011)
Genes Dev.
, vol.25
, pp. 1023-1028
-
-
Lian, H.L.1
-
90
-
-
33847042609
-
Light-regulated transcriptional networks in higher plants
-
Jiao Y., et al. Light-regulated transcriptional networks in higher plants. Nat. Rev. Genet. 2007, 8:217-230.
-
(2007)
Nat. Rev. Genet.
, vol.8
, pp. 217-230
-
-
Jiao, Y.1
-
91
-
-
0034713297
-
Targeted destabilization of HY5 during light-regulated development of Arabidopsis
-
Osterlund M.T., et al. Targeted destabilization of HY5 during light-regulated development of Arabidopsis. Nature 2000, 405:462-466.
-
(2000)
Nature
, vol.405
, pp. 462-466
-
-
Osterlund, M.T.1
-
92
-
-
11144335485
-
The degradation of HFR1, a putative bHLH class transcription factor involved in light signaling, is regulated by phosphorylation and requires COP1
-
Duek P.D., et al. The degradation of HFR1, a putative bHLH class transcription factor involved in light signaling, is regulated by phosphorylation and requires COP1. Curr. Biol. 2004, 14:2296-2301.
-
(2004)
Curr. Biol.
, vol.14
, pp. 2296-2301
-
-
Duek, P.D.1
-
93
-
-
34250780751
-
Analysis of transcription factor HY5 genomic binding sites revealed its hierarchical role in light regulation of development
-
Lee J., et al. Analysis of transcription factor HY5 genomic binding sites revealed its hierarchical role in light regulation of development. Plant Cell 2007, 19:731-749.
-
(2007)
Plant Cell
, vol.19
, pp. 731-749
-
-
Lee, J.1
-
94
-
-
19544376094
-
Light regulates COP1-mediated degradation of HFR1, a transcription factor essential for light signaling in Arabidopsis
-
Yang J., et al. Light regulates COP1-mediated degradation of HFR1, a transcription factor essential for light signaling in Arabidopsis. Plant Cell 2005, 17:804-821.
-
(2005)
Plant Cell
, vol.17
, pp. 804-821
-
-
Yang, J.1
-
95
-
-
1942535763
-
Induction of flowering by seasonal changes in photoperiod
-
Searle I., Coupland G. Induction of flowering by seasonal changes in photoperiod. EMBO J. 2004, 23:1217-1222.
-
(2004)
EMBO J.
, vol.23
, pp. 1217-1222
-
-
Searle, I.1
Coupland, G.2
-
96
-
-
42449112370
-
COP1-mediated ubiquitination of CONSTANS is implicated in cryptochrome regulation of flowering in Arabidopsis
-
Liu L.J., et al. COP1-mediated ubiquitination of CONSTANS is implicated in cryptochrome regulation of flowering in Arabidopsis. Plant Cell 2008, 20:292-306.
-
(2008)
Plant Cell
, vol.20
, pp. 292-306
-
-
Liu, L.J.1
-
97
-
-
42449119813
-
Arabidopsis COP1 shapes the temporal pattern of CO accumulation conferring a photoperiodic flowering response
-
Jang S., et al. Arabidopsis COP1 shapes the temporal pattern of CO accumulation conferring a photoperiodic flowering response. EMBO J. 2008, 27:1277-1288.
-
(2008)
EMBO J.
, vol.27
, pp. 1277-1288
-
-
Jang, S.1
-
98
-
-
1142286356
-
Photoreceptor regulation of CONSTANS protein in photoperiodic flowering
-
Valverde F., et al. Photoreceptor regulation of CONSTANS protein in photoperiodic flowering. Science 2004, 303:1003-1006.
-
(2004)
Science
, vol.303
, pp. 1003-1006
-
-
Valverde, F.1
-
99
-
-
24744437309
-
N-terminal domain-mediated homodimerization is required for photoreceptor activity of Arabidopsis CRYPTOCHROME 1
-
Sang Y., et al. N-terminal domain-mediated homodimerization is required for photoreceptor activity of Arabidopsis CRYPTOCHROME 1. Plant Cell 2005, 17:1569-1584.
-
(2005)
Plant Cell
, vol.17
, pp. 1569-1584
-
-
Sang, Y.1
-
100
-
-
62549099234
-
Chemically induced and light-independent cryptochrome photoreceptor activation
-
Rosenfeldt G., et al. Chemically induced and light-independent cryptochrome photoreceptor activation. Mol. Plant 2008, 1:4-12.
-
(2008)
Mol. Plant
, vol.1
, pp. 4-12
-
-
Rosenfeldt, G.1
-
101
-
-
0028670756
-
Light inactivation of Arabidopsis photomorphogenic repressor COP1 involves a cell-specific regulation of its nucleocytoplasmic partitioning
-
Von Arnim A.G., Deng X.-W. Light inactivation of Arabidopsis photomorphogenic repressor COP1 involves a cell-specific regulation of its nucleocytoplasmic partitioning. Cell 1994, 79:1035-1045.
-
(1994)
Cell
, vol.79
, pp. 1035-1045
-
-
Von Arnim, A.G.1
Deng, X.-W.2
-
102
-
-
56849102536
-
COP1 and ELF3 control circadian function and photoperiodic flowering by regulating GI stability
-
Yu J.W., et al. COP1 and ELF3 control circadian function and photoperiodic flowering by regulating GI stability. Mol. Cell 2008, 32:617-630.
-
(2008)
Mol. Cell
, vol.32
, pp. 617-630
-
-
Yu, J.W.1
-
103
-
-
0242266958
-
The COP1-SPA1 interaction defines a critical step in phytochrome A-mediated regulation of HY5 activity
-
Saijo Y., et al. The COP1-SPA1 interaction defines a critical step in phytochrome A-mediated regulation of HY5 activity. Genes Dev. 2003, 17:2642-2647.
-
(2003)
Genes Dev.
, vol.17
, pp. 2642-2647
-
-
Saijo, Y.1
-
104
-
-
33748761912
-
Arabidopsis SPA proteins regulate photoperiodic flowering and interact with the floral inducer CONSTANS to regulate its stability
-
Laubinger S., et al. Arabidopsis SPA proteins regulate photoperiodic flowering and interact with the floral inducer CONSTANS to regulate its stability. Development 2006, 133:3213-3222.
-
(2006)
Development
, vol.133
, pp. 3213-3222
-
-
Laubinger, S.1
-
105
-
-
0035851133
-
The phytochrome A-specific signaling intermediate SPA1 interacts directly with COP1, a constitutive repressor of light signaling in Arabidopsis
-
Hoecker U., Quail P.H. The phytochrome A-specific signaling intermediate SPA1 interacts directly with COP1, a constitutive repressor of light signaling in Arabidopsis. J. Biol. Chem. 2001, 276:38173-38178.
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 38173-38178
-
-
Hoecker, U.1
Quail, P.H.2
-
106
-
-
0033574739
-
SPA1, a WD-repeat protein specific to phytochrome A signal transduction
-
Hoecker U., et al. SPA1, a WD-repeat protein specific to phytochrome A signal transduction. Science 1999, 284:496-499.
-
(1999)
Science
, vol.284
, pp. 496-499
-
-
Hoecker, U.1
-
107
-
-
49349094706
-
Arabidopsis COP1/SPA1 complex and FHY1/FHY3 associate with distinct phosphorylated forms of phytochrome A in balancing light signaling
-
Saijo Y., et al. Arabidopsis COP1/SPA1 complex and FHY1/FHY3 associate with distinct phosphorylated forms of phytochrome A in balancing light signaling. Mol. Cell 2008, 31:607-613.
-
(2008)
Mol. Cell
, vol.31
, pp. 607-613
-
-
Saijo, Y.1
-
108
-
-
57649092436
-
Biochemical characterization of Arabidopsis complexes containing CONSTITUTIVELY PHOTOMORPHOGENIC1 and SUPPRESSOR OF PHYA proteins in light control of plant development
-
Zhu D., et al. Biochemical characterization of Arabidopsis complexes containing CONSTITUTIVELY PHOTOMORPHOGENIC1 and SUPPRESSOR OF PHYA proteins in light control of plant development. Plant Cell 2008, 20:2307-2323.
-
(2008)
Plant Cell
, vol.20
, pp. 2307-2323
-
-
Zhu, D.1
-
109
-
-
4544232080
-
The SPA quartet: a family of WD-repeat proteins with a central role in suppression of photomorphogenesis in Arabidopsis
-
Laubinger S., et al. The SPA quartet: a family of WD-repeat proteins with a central role in suppression of photomorphogenesis in Arabidopsis. Plant Cell 2004, 16:2293-2306.
-
(2004)
Plant Cell
, vol.16
, pp. 2293-2306
-
-
Laubinger, S.1
-
110
-
-
27744474619
-
COP1 - from plant photomorphogenesis to mammalian tumorigenesis
-
Yi C., Deng X.W. COP1 - from plant photomorphogenesis to mammalian tumorigenesis. Trends Cell Biol. 2005, 15:618-625.
-
(2005)
Trends Cell Biol.
, vol.15
, pp. 618-625
-
-
Yi, C.1
Deng, X.W.2
-
111
-
-
1842831293
-
Photoreceptor ubiquitination by COP1 E3 ligase desensitizes phytochrome A signaling
-
Seo H.S., et al. Photoreceptor ubiquitination by COP1 E3 ligase desensitizes phytochrome A signaling. Genes Dev. 2004, 18:617-622.
-
(2004)
Genes Dev.
, vol.18
, pp. 617-622
-
-
Seo, H.S.1
|