메뉴 건너뛰기




Volumn 4, Issue 3, 2011, Pages 327-331

Tool wear modelling through regression analysis and intelligent methods for nickel base alloy machining

Author keywords

Ni base alloy; Tool wear modelling; Turning

Indexed keywords

ANN PREDICTION; ARTIFICIAL NEURAL NETWORK; CUTTING SPEED; CUTTING TIME; EMPIRICAL MODEL; ENGINE COMPONENTS; FLANK WEAR; INCONEL-718; INTELLIGENT METHOD; NETWORK CONFIGURATION; NI-BASE ALLOYS; NICKEL BASE ALLOYS; NUMBER OF DATUM; ONLINE PREDICTION; SELECTION OF THE BEST; TOOL WEAR; TOOL WEAR MODELLING;

EID: 82955237528     PISSN: 17555817     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cirpj.2011.03.009     Document Type: Article
Times cited : (61)

References (11)
  • 6
    • 20644462360 scopus 로고    scopus 로고
    • An Artificial-Neural-Networks-based in-Process Tool Wear Prediction System in Milling Operations
    • Chen J.C., Chen J.C. An Artificial-Neural-Networks-based in-Process Tool Wear Prediction System in Milling Operations. International Journal of Advanced Manufacturing Technology 2005, 25(5/6):427-434.
    • (2005) International Journal of Advanced Manufacturing Technology , vol.25 , Issue.5-6 , pp. 427-434
    • Chen, J.C.1    Chen, J.C.2
  • 8
    • 82955200203 scopus 로고
    • An Empirical Study of Learning Speed in Back Propagation Networks, Tech. Rep., CMU-CS-
    • Fahlman, S.E., Lebiere, C., 1990, An Empirical Study of Learning Speed in Back Propagation Networks, Tech. Rep., CMU-CS-88-162.
    • (1990) , pp. 88-162
    • Fahlman, S.E.1    Lebiere, C.2
  • 10
    • 0003486924 scopus 로고
    • Academic Press, San Diego
    • ++ 1993, Academic Press, San Diego.
    • (1993) ++
    • Masters, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.