메뉴 건너뛰기




Volumn 23, Issue 4, 2011, Pages 389-393

Homotopy analysis method for the fractional nonlinear equations

Author keywords

Fractional differential equations; Homotopy analysis method; Nonlinear differential equations

Indexed keywords


EID: 82955201678     PISSN: 10183647     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jksus.2010.07.019     Document Type: Article
Times cited : (12)

References (14)
  • 1
    • 33644885770 scopus 로고    scopus 로고
    • Iterated He's homotopy perturbation method for quadratic Riccati differential equation
    • Abbasbandy S. Iterated He's homotopy perturbation method for quadratic Riccati differential equation. Appl. Math. Comput. 2006, 175:581-589.
    • (2006) Appl. Math. Comput. , vol.175 , pp. 581-589
    • Abbasbandy, S.1
  • 2
    • 0012845358 scopus 로고
    • A global method for solution of complex systems
    • Adomian G., Adomian G.E. A global method for solution of complex systems. Math. Model. 1984, 5:521-568.
    • (1984) Math. Model. , vol.5 , pp. 521-568
    • Adomian, G.1    Adomian, G.E.2
  • 3
    • 84977255207 scopus 로고
    • Linear models of dissipation whose Q is almost frequency independent - Part II
    • Caputo M. Linear models of dissipation whose Q is almost frequency independent - Part II. J. R. Astron. Soc. 1967, 13:529-539.
    • (1967) J. R. Astron. Soc. , vol.13 , pp. 529-539
    • Caputo, M.1
  • 4
    • 75449103955 scopus 로고    scopus 로고
    • Solution of nonlinear fractional differential equations using homotopy analysis method
    • Ganjiani M. Solution of nonlinear fractional differential equations using homotopy analysis method. Appl. Math. Model. 2010, 34:1634-1641.
    • (2010) Appl. Math. Model. , vol.34 , pp. 1634-1641
    • Ganjiani, M.1
  • 5
    • 34248392690 scopus 로고    scopus 로고
    • Numerical solution of two-dimensional nonlinear differential equation by homotopy perturbation method
    • Ghasemi M., Tavassoli Kajani M., Davari A. Numerical solution of two-dimensional nonlinear differential equation by homotopy perturbation method. Appl. Math. Comput. 2007, 189:341-345.
    • (2007) Appl. Math. Comput. , vol.189 , pp. 341-345
    • Ghasemi, M.1    Tavassoli Kajani, M.2    Davari, A.3
  • 6
    • 0013403638 scopus 로고    scopus 로고
    • An approximate solution technique depending upon an artificial parameter
    • He J.H. An approximate solution technique depending upon an artificial parameter. Commun. Nonlinear Sci. Numer. Simul. 1998, 3(2):92-97.
    • (1998) Commun. Nonlinear Sci. Numer. Simul. , vol.3 , Issue.2 , pp. 92-97
    • He, J.H.1
  • 8
    • 0141961626 scopus 로고    scopus 로고
    • On the homotopy analysis method for nonlinear problems
    • Liao S.J. On the homotopy analysis method for nonlinear problems. Appl. Math. Comput. 2004, 147:499-513.
    • (2004) Appl. Math. Comput. , vol.147 , pp. 499-513
    • Liao, S.J.1
  • 9
    • 34848900880 scopus 로고    scopus 로고
    • A general approach to obtain series solutions of nonlinear differential equations
    • Liao S.J., Tan Y. A general approach to obtain series solutions of nonlinear differential equations. Stud. Appl. Math. 2007, 119:297-355.
    • (2007) Stud. Appl. Math. , vol.119 , pp. 297-355
    • Liao, S.J.1    Tan, Y.2
  • 12
    • 0000937070 scopus 로고    scopus 로고
    • Necessary conditions for the appearance of noise terms in decomposition solution series
    • Wazwaz A.M. Necessary conditions for the appearance of noise terms in decomposition solution series. J. Math. Anal. Appl. 1997, 5:265-274.
    • (1997) J. Math. Anal. Appl. , vol.5 , pp. 265-274
    • Wazwaz, A.M.1
  • 14
    • 34547420243 scopus 로고    scopus 로고
    • An analytic solution of projectile motion with the quadratic resistance law using the homotopy analysis method
    • Yamashita M., Yabushita K., Tsuboi K. An analytic solution of projectile motion with the quadratic resistance law using the homotopy analysis method. J. Phys. A 2007, 40:8403-8416.
    • (2007) J. Phys. A , vol.40 , pp. 8403-8416
    • Yamashita, M.1    Yabushita, K.2    Tsuboi, K.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.