-
1
-
-
84953009457
-
Pricing and hedging derivative securities in markets with uncertain volatility
-
AVELLANEDA, M., LÉVY, M. M. and PARÁS, A. (1995). Pricing and hedging derivative securities in markets with uncertain volatility. Appl. Math. Finance 2 73-88.
-
(1995)
Appl. Math. Finance
, vol.2
, pp. 73-88
-
-
Avellaneda, M.1
Lévy, M.M.2
Parás, A.3
-
2
-
-
78650278734
-
Optimal stopping for nonlinear expectations
-
Appl. To appear
-
BAYRAKTAR, E. and YAO, S. (2011). Optimal stopping for nonlinear expectations. Stochastic Process. Appl. To appear.
-
(2011)
Stochastic Process
-
-
Bayraktar, E.1
Yao, S.2
-
3
-
-
84861785838
-
Optimal stopping for dynamic convex risk measures
-
(special issue on honor of Don. Burkholder). To appear
-
BAYRAKTAR, E., KARATZAS, I. and YAO, S. (2011). Optimal stopping for dynamic convex risk measures. Illinois J. Math. (special issue on honor of Don. Burkholder). To appear.
-
(2011)
Illinois J. Math.
-
-
Bayraktar, E.1
Karatzas, I.2
Yao, S.3
-
4
-
-
16244406964
-
Stochastic optimal control: The discrete time case
-
Academic Press, New York. MR0511544
-
BERTSEKAS, D. P. and SHREVE, S. E. (1978). Stochastic Optimal Control: The Discrete Time Case. Mathematics in Science and Engineering 139. Academic Press, New York. MR0511544
-
(1978)
Mathematics in Science and Engineering
, vol.139
-
-
Bertsekas, D.P.1
Shreve, S.E.2
-
5
-
-
32144449613
-
Equivalent and absolutely continuous measure changes for jump-diffusion processes
-
DOI 10.1214/105051605000000197
-
CHERIDITO, P., FILIPOVÍC, D. andYOR, M. (2005). Equivalent and absolutely continuous measure changes for jump-diffusion processes. Ann. Appl. Probab. 15 1713-1732. MR2152242 (Pubitemid 43205542)
-
(2005)
Annals of Applied Probability
, vol.15
, Issue.3
, pp. 1713-1732
-
-
Cheridito, P.1
Filipovic, D.2
Yor, M.3
-
6
-
-
0033235821
-
Super-replication in stochastic volatility models under portfolio constraints
-
MR1724796
-
CVITANÍC , J., PHAM, H. and TOUZI, N. (1999). Super-replication in stochastic volatility models under portfolio constraints. J. Appl. Probab. 36 523-545. MR1724796
-
(1999)
J. Appl. Probab.
, vol.36
, pp. 523-545
-
-
Cvitaníc, J.1
Pham, H.2
Touzi, N.3
-
7
-
-
21344463289
-
The existence of absolutely continuous local martingale measures
-
DELBAEN, F. and SCHACHERMAYER, W. (1995a). The existence of absolutely continuous local martingale measures. Ann. Appl. Probab. 5 926-945. MR1384360 (Pubitemid 126089067)
-
(1995)
Annals of Applied Probability
, vol.5
, Issue.4
, pp. 926-945
-
-
Delbaen, F.1
Schachermayer, W.2
-
8
-
-
0000646042
-
The no-arbitrage property under a change of numéraire
-
MR1381678
-
DELBAEN, F. and SCHACHERMAYER, W. (1995b). The no-arbitrage property under a change of numéraire. Stochastics Stochastics Rep. 53 213-226. MR1381678
-
(1995)
Stochastics Stochastics Rep.
, vol.53
, pp. 213-226
-
-
Delbaen, F.1
Schachermayer, W.2
-
9
-
-
33746876027
-
A theoretical framework for the pricing of contingent claims in the presence of model uncertainty
-
DOI 10.1214/105051606000000169
-
DENIS, L. and MARTINI, C. (2006). A theoretical framework for the pricing of contingent claims in the presence of model uncertainty. Ann. Appl. Probab. 16 827-852. MR2244434 (Pubitemid 44196534)
-
(2006)
Annals of Applied Probability
, vol.16
, Issue.2
, pp. 827-852
-
-
Denis, L.1
Martini, C.2
-
11
-
-
70049108369
-
Bubbles, convexity and the Black-Scholes equation
-
MR2538074
-
EKSTRÖM, E. and TYSK, J. (2009). Bubbles, convexity and the Black-Scholes equation. Ann. Appl. Probab. 19 1369-1384. MR2538074
-
(2009)
Ann. Appl. Probab.
, vol.19
, pp. 1369-1384
-
-
Ekström, E.1
Tysk, J.2
-
12
-
-
0001274938
-
Compactification methods in the control of degenerate diffusions: Existence of an optimal control
-
MR0878312
-
EL KAROUI, N., HUÙNGUYEN, D. and JEANBLANC-PICQUÉ, M. (1987). Compactification methods in the control of degenerate diffusions: Existence of an optimal control. Stochastics 20 169-219. MR0878312
-
(1987)
Stochastics
, vol.20
, pp. 169-219
-
-
Karoui N, E.L.1
Huùnguyen, D.2
Jeanblanc-Picqué, M.3
-
15
-
-
13444254352
-
Relative arbitrage in volatility-stabilized markets
-
DOI 10.1007/s10436-004-0011-6
-
FERNHOLZ, E. R. and KARATZAS, I. (2005). Relative arbitrage in volatility-stabilized markets. Annals of Finance 1 149-177. (Pubitemid 40216998)
-
(2005)
Annals of Finance
, vol.1
, Issue.2
, pp. 149-177
-
-
Fernholz, R.1
Karatzas, I.2
-
16
-
-
85058498107
-
Stochastic portfolio theory: A survey
-
(A. Bensoussan and Q. Zhang, eds.). Elsevier, Amsterdam
-
FERNHOLZ, E. R. and KARATZAS, I. (2009). Stochastic portfolio theory: A survey. In Handbook of Numerical Analysis (A. Bensoussan and Q. Zhang, eds.). 88-168. Elsevier, Amsterdam.
-
(2009)
Handbook of Numerical Analysis
, pp. 88-168
-
-
Fernholz, E.R.1
Karatzas, I.2
-
17
-
-
77955130882
-
On optimal arbitrage
-
MR2676936
-
FERNHOLZ, D. and KARATZAS, I. (2010a). On optimal arbitrage. Ann. Appl. Probab. 20 1179-1204. MR2676936
-
(2010)
Ann. Appl. Probab.
, vol.20
, pp. 1179-1204
-
-
Fernholz, D.1
Karatzas, I.2
-
20
-
-
0003347615
-
Deterministic and stochastic optimal control
-
Springer, Berlin. MR0454768
-
FLEMING, W. H. and RISHEL, R. W. (1975). Deterministic and Stochastic Optimal Control. Applications of Mathematics 1. Springer, Berlin. MR0454768
-
(1975)
Applications of Mathematics
, vol.1
-
-
Fleming, W.H.1
Rishel, R.W.2
-
21
-
-
0003294328
-
Controlled Markov processes and viscosity solutions
-
(New York) Springer, New York. MR1199811
-
FLEMING, W. H. and SONER, H. M. (1993). Controlled Markov Processes and Viscosity Solutions. Applications of Mathematics (New York) 25. Springer, New York. MR1199811
-
(1993)
Applications of Mathematics
, vol.25
-
-
Fleming, W.H.1
Soner, H.M.2
-
22
-
-
0024731399
-
Convex duality approach to the optimal control of diffusions
-
MR1009341
-
FLEMING, W. H. and VERMES, D. (1989). Convex duality approach to the optimal control of diffusions. SIAM J. Control Optim. 27 1136-1155. MR1009341
-
(1989)
SIAM J. Control Optim.
, vol.27
, pp. 1136-1155
-
-
Fleming, W.H.1
Vermes, D.2
-
23
-
-
0000817774
-
The exit measure of a supermartingale
-
MR0309184
-
FÖLLMER, H. (1972). The exit measure of a supermartingale. Z. Wahrsch. Verw. Gebiete 21 154-166. MR0309184
-
(1972)
Z. Wahrsch. Verw. Gebiete
, vol.21
, pp. 154-166
-
-
Föllmer, H.1
-
24
-
-
33846841891
-
On the representation of semimartingales
-
MR0353446
-
FÖLLMER, H. (1973). On the representation of semimartingales. Ann. Probab. 1 580-589. MR0353446
-
(1973)
Ann. Probab.
, vol.1
, pp. 580-589
-
-
Föllmer, H.1
-
25
-
-
33846850597
-
Robust projections in the class of martingale measures
-
(electronic). MR2247836
-
FÖLLMER, H. and GUNDEL, A. (2006). Robust projections in the class of martingale measures. Illinois J. Math. 50 439-472 (electronic). MR2247836
-
(2006)
Illinois J. Math.
, vol.50
, pp. 439-472
-
-
Föllmer, H.1
Gundel, A.2
-
26
-
-
70350329270
-
Robust preferences and robust Portfolio choice
-
(A. Bensoussan and Q. Zhang, eds.). Elsevier, Amsterdam
-
FÖLLMER, H., SCHIED, A. and WEBER, S. (2009). Robust preferences and robust Portfolio choice. In Handbook of Numerical Analysis (A. Bensoussan and Q. Zhang, eds.). 29-87. Elsevier, Amsterdam.
-
(2009)
Handbook of Numerical Analysis
, pp. 29-87
-
-
Föllmer, H.1
Schied, A.2
Weber, S.3
-
27
-
-
33645715603
-
Superreplication in stochastic volatility models and optimal stopping
-
MR1780325
-
FREY, R. (2000). Superreplication in stochastic volatility models and optimal stopping. Finance Stoch. 4 161-187. MR1780325
-
(2000)
Finance Stoch.
, vol.4
, pp. 161-187
-
-
Frey, R.1
-
28
-
-
0001266334
-
Maxmin expected utility with nonunique prior
-
MR1000102
-
GILBOA, I. and SCHMEIDLER, D. (1989). Maxmin expected utility with nonunique prior. J. Math. Econom. 18 141-153. MR1000102
-
(1989)
J. Math. Econom.
, vol.18
, pp. 141-153
-
-
Gilboa, I.1
Schmeidler, D.2
-
29
-
-
77955125781
-
-
ProQuest LLC, Ann Arbor, MI. PhD Thesis, Columbia Univ. MR2713615
-
GOIA, I. (2009). Bessel and Volatility-stabilized Processes. ProQuest LLC, Ann Arbor, MI. PhD Thesis, Columbia Univ. MR2713615
-
(2009)
Bessel and Volatility-stabilized Processes
-
-
Goia, I.1
-
30
-
-
0036501524
-
Superreplication of European multiasset derivatives with bounded stochastic volatility
-
DOI 10.1007/s001860200172
-
GOZZI, F. and VARGIOLU, T. (2002). Superreplication of European multiasset derivatives with bounded stochastic volatility. Math. Methods Oper. Res. 55 69-91. MR1892718 (Pubitemid 34278822)
-
(2002)
Mathematical Methods of Operations Research
, vol.55
, Issue.1
, pp. 69-91
-
-
Gozzi, F.1
Vargiolu, T.2
-
31
-
-
82655182674
-
Super-replication of European multi-asset derivatives with bounded stochastic volatility
-
GUNDEL, A. (2005). Super-replication of European multi-asset derivatives with bounded stochastic volatility. Finance Stoch. 9 851-176.
-
(2005)
Finance Stoch.
, vol.9
, pp. 851-176
-
-
Gundel, A.1
-
33
-
-
0023148268
-
Minimizing or maximizing the expected time to reach zero
-
HEATH, D., OREY, S., PESTIEN, V. and SUDDERTH, W. (1987). Minimizing or maximizing the expected time to reach zero. SIAM J. Control Optim. 25 195-205. MR0872458 (Pubitemid 17513623)
-
(1987)
SIAM Journal on Control and Optimization
, vol.25
, Issue.1
, pp. 195-205
-
-
Heath, D.1
Orey, S.2
Pestien, V.3
Sudderth, W.4
-
34
-
-
33645022546
-
Feynman-kac formulas for black-scholes-type operators
-
DOI 10.1112/S0024609306018194
-
JANSON, S. and TYSK, J. (2006). Feynman-Kac formulas for Black-Scholes-type operators. Bull. London Math. Soc. 38 269-282. MR2214479 (Pubitemid 43417647)
-
(2006)
Bulletin of the London Mathematical Society
, vol.38
, Issue.2
, pp. 269-282
-
-
Janson, S.1
Tysk, J.2
-
35
-
-
34548066531
-
The numéraire portfolio in semimartingale financial models
-
MR2335830
-
KARATZAS, I. and KARDARAS, C. (2007). The numéraire portfolio in semimartingale financial models. Finance Stoch. 11 447-493. MR2335830
-
(2007)
Finance Stoch.
, vol.11
, pp. 447-493
-
-
Karatzas, I.1
Kardaras, C.2
-
36
-
-
0003242243
-
Brownian motion and stochastic calculus
-
2nd ed. Springer, New York. MR1121940
-
KARATZAS, I. and SHREVE, S. E. (1991). Brownian Motion and Stochastic Calculus, 2nd ed. Graduate Texts in Mathematics 113. Springer, New York. MR1121940
-
(1991)
Graduate Texts in Mathematics
, vol.113
-
-
Karatzas, I.1
Shreve, S.E.2
-
37
-
-
67649247822
-
Game approach to the optimal stopping problem
-
MR2178425
-
KARATZAS, I. and ZAMFIRESCU, I.-M. (2005). Game approach to the optimal stopping problem. Stochastics 77 401-435. MR2178425
-
(2005)
Stochastics
, vol.77
, pp. 401-435
-
-
Karatzas, I.1
Zamfirescu, I.-M.2
-
39
-
-
0000538250
-
The selection of a Markov process from a Markov system of processes, and the construction of quasidiffusion processes
-
MR0339338
-
KRYLOV, N. V. (1973). The selection of a Markov process from a Markov system of processes, and the construction of quasidiffusion processes. Izv. Akad. Nauk SSSR Ser. Mat. 37 691-708. MR0339338
-
(1973)
Izv. Akad. Nauk SSSR Ser. Mat.
, vol.37
, pp. 691-708
-
-
Krylov, N.V.1
-
40
-
-
0007282196
-
Controlled diffusion processes
-
Springer, New York. MR0601776
-
KRYLOV, N. V. (1980). Controlled Diffusion Processes. Applications of Mathematics 14. Springer, New York. MR0601776
-
(1980)
Applications of Mathematics
, vol.14
-
-
Krylov, N.V.1
-
41
-
-
0040870125
-
Nonlinear elliptic and parabolic equations of the second order
-
Reidel, Dordrecht. MR0901759
-
KRYLOV, N. V. (1987). Nonlinear Elliptic and Parabolic Equations of the Second Order. Mathematics and Its Applications (Soviet Series) 7. Reidel, Dordrecht. MR0901759
-
(1987)
Mathematics and Its Applications (Soviet Series)
, vol.7
-
-
Krylov, N.V.1
-
42
-
-
0001139412
-
A supermartingale characterization of a set of stochastic integrals
-
861. MR1002711
-
KRYLOV, N. V. (1989). A supermartingale characterization of a set of stochastic integrals. Ukrain. Mat. Zh. 41 757-762, 861. MR1002711
-
(1989)
Ukrain. Mat. Zh.
, vol.41
, pp. 757-762
-
-
Krylov, N.V.1
-
43
-
-
0002265848
-
Smoothness of the value function for a controlled diffusion process in a domain
-
KRYLOV, N. V. (1990). Smoothness of the value function for a controlled diffusion process in a domain. Math. USSR Izvestiya 34 65-95.
-
(1990)
Math. USSR Izvestiya
, vol.34
, pp. 65-95
-
-
Krylov, N.V.1
-
44
-
-
0036025137
-
A supermartingale characterization of sets of stochastic integrals and applications
-
DOI 10.1007/s004400100190
-
KRYLOV, N. V. (2002). A supermartingale characterization of sets of stochastic integrals and applications. Probab. Theory Related Fields 123 521-552. MR1921012 (Pubitemid 36195073)
-
(2002)
Probability Theory and Related Fields
, vol.123
, Issue.4
, pp. 521-552
-
-
Krylov, N.V.1
-
45
-
-
0003329017
-
Stochastic flows and stochastic differential equations
-
Cambridge Univ. Press, Cambridge. MR1070361
-
KUNITA, H. (1990). Stochastic Flows and Stochastic Differential Equations. Cambridge Studies in Advanced Mathematics 24. Cambridge Univ. Press, Cambridge. MR1070361
-
(1990)
Cambridge Studies in Advanced Mathematics
, vol.24
-
-
Kunita, H.1
-
46
-
-
21344450279
-
A necessary and sufficient condition for absence of arbitrage with tame portfolios
-
LEVENTAL, S. and SKOROHOD, A. V. (1995). A necessary and sufficient condition for absence of arbitrage with tame portfolios. Ann. Appl. Probab. 5 906-925. MR1384359 (Pubitemid 126089066)
-
(1995)
Annals of Applied Probability
, vol.5
, Issue.4
, pp. 906-925
-
-
Levental, S.1
Skorohod, A.V.2
-
47
-
-
0040662527
-
Second order parabolic differential equations
-
River Edge, NJ. MR1465184
-
LIEBERMAN, G. M. (1996). Second Order Parabolic Differential Equations.World Scientific, River Edge, NJ. MR1465184
-
(1996)
World Scientific
-
-
Lieberman, G.M.1
-
48
-
-
84947513018
-
Optimal control of diffusion processes and Hamilton-Jacobi-Bellman equations. I. The dynamic programming principle and applications
-
MR0709164
-
LIONS, P. L. (1983a). Optimal control of diffusion processes and Hamilton-Jacobi-Bellman equations. I. The dynamic programming principle and applications. Comm. Partial Differential Equations 8 1101-1174. MR0709164
-
(1983)
Comm. Partial Differential Equations
, vol.8
, pp. 1101-1174
-
-
Lions, P.L.1
-
49
-
-
84953017099
-
Optimal control of diffusion processes and Hamilton-Jacobi-Bellman equations. II. Viscosity solutions and uniqueness. Comm
-
MR0709162
-
LIONS, P. L. (1983b). Optimal control of diffusion processes and Hamilton-Jacobi-Bellman equations. II. Viscosity solutions and uniqueness. Comm. Partial Differential Equations 8 1229-1276. MR0709162
-
(1983)
Partial Differential Equations
, vol.8
, pp. 1229-1276
-
-
Lions, P.L.1
-
50
-
-
0006804232
-
Optimal control of diffusion processes and Hamilton-Jacobi-Bellman equations. III. Regularity of the optimal cost function
-
Nonlinear Partial Differential Equations and Their Applications. Collège de France Seminar, V (Paris, 1981/1982). Pitman, Boston, MA. MR0725360
-
LIONS, P. L. (1983c). Optimal control of diffusion processes and Hamilton-Jacobi-Bellman equations. III. Regularity of the optimal cost function. In Nonlinear Partial Differential Equations and Their Applications. Collège de France Seminar, Vol. V (Paris, 1981/1982). Res. Notes in Math. 93 95-205. Pitman, Boston, MA. MR0725360
-
(1983)
Res. Notes in Math
, vol.93
, pp. 95-205
-
-
Lions, P.L.1
-
51
-
-
77956796388
-
Some recent results in the optimal control of diffusion processes
-
North-Holland Math. Library (Katata/Kyoto. North-Holland, Amsterdam. MR0780764
-
LIONS, P.-L. (1984). Some recent results in the optimal control of diffusion processes. In Stochastic Analysis (Katata/Kyoto, 1982). North-Holland Math. Library 32 333-367. North-Holland, Amsterdam. MR0780764
-
(1982)
Stochastic Analysis
, vol.32
, pp. 333-367
-
-
Lions, P.-L.1
-
52
-
-
84963386901
-
Uncertain volatility and the risk-free synthesis of securities
-
LYONS, T. J. (1995). Uncertain volatility and the risk-free synthesis of securities. Appl. Math. Finance 2 117-133.
-
(1995)
Appl. Math. Finance
, vol.2
, pp. 117-133
-
-
Lyons, T.J.1
-
53
-
-
79958168856
-
La mesure de H. Föllmer en théorie des surmartingales
-
Séminaire de Probabilités, VI (Univ. Strasbourg, Année Universitaire 1970-1971; Journées Probabilistes de Strasbourg, 1971) Springer, Berlin. MR0368131
-
MEYER, P. A. (1972). La mesure de H. Föllmer en théorie des surmartingales. In Séminaire de Probabilités, VI (Univ. Strasbourg, Année Universitaire 1970-1971; Journées Probabilistes de Strasbourg, 1971). Lecture Notes in Math. 258 118-129. Springer, Berlin. MR0368131
-
(1972)
Lecture Notes in Math
, vol.258
, pp. 118-129
-
-
Meyer, P.A.1
-
54
-
-
33747207531
-
The Black Scholes Barenblatt equation for options with uncertain volatility and its application to static hedging
-
DOI 10.1142/S0219024906003755, PII S0219024906003755
-
MEYER, G. H. (2006). The Black Scholes Barenblatt equation for options with uncertain volatility and its application to static hedging. Int. J. Theor. Appl. Finance 9 673-703. MR2254127 (Pubitemid 44238751)
-
(2006)
International Journal of Theoretical and Applied Finance
, vol.9
, Issue.5
, pp. 673-703
-
-
Meyer, G.H.1
-
57
-
-
79958209387
-
Analysis of the market weights under the volatility-stabilized market models
-
To appear
-
PAL, S. (2011). Analysis of the market weights under the volatility-stabilized market models. Ann. Appl. Probab. To appear.
-
(2011)
Ann. Appl. Probab.
-
-
Pal, S.1
-
58
-
-
82655171400
-
Analysis of continuous strict local martingales via h-transforms
-
PAL, S. and PROTTER, P. (2010). Analysis of continuous strict local martingales via h-transforms. Stochastic Process. Appl. 120 1424-1443.
-
(2010)
Stochastic Process. Appl.
, vol.120
, pp. 1424-1443
-
-
Pal, S.1
Protter, P.2
-
59
-
-
0013457599
-
Probability measures on metric spaces
-
Academic Press, New York. MR0226684
-
PARTHASARATHY, K. R. (1967). Probability Measures on Metric Spaces. Probability and Mathematical Statistics 3. Academic Press, New York. MR0226684
-
(1967)
Probability and Mathematical Statistics
, vol.3
-
-
Parthasarathy, K.R.1
-
61
-
-
0022161045
-
Continuous-time red and black: How to control a diffusion to a goal
-
MR0812818
-
PESTIEN, V. C. and SUDDERTH, W. D. (1985). Continuous-time red and black: How to control a diffusion to a goal. Math. Oper. Res. 10 599-611. MR0812818
-
(1985)
Math. Oper. Res.
, vol.10
, pp. 599-611
-
-
Pestien, V.C.1
Sudderth, W.D.2
-
62
-
-
0003522826
-
Stochastic Integration and Differential Equations, 2nd ed
-
Springer, Berlin. MR2020294
-
PROTTER, P. E. (2004). Stochastic Integration and Differential Equations, 2nd ed. Applications of Mathematics (New York) 21. Springer, Berlin. MR2020294
-
(2004)
Applications of Mathematics (New York)
, vol.21
-
-
Protter, P.E.1
-
63
-
-
65949095658
-
Optimal stopping with multiple priors
-
MR2531363
-
RIEDEL, F. (2009). Optimal stopping with multiple priors. Econometrica 77 857-908. MR2531363
-
(2009)
Econometrica
, vol.77
, pp. 857-908
-
-
Riedel, F.1
-
64
-
-
0008719475
-
Robustness of the Black-Scholes approach in the case of options on several assets
-
MR1779582
-
ROMAGNOLI, S. and VARGIOLU, T. (2000). Robustness of the Black-Scholes approach in the case of options on several assets. Finance Stoch. 4 325-341. MR1779582
-
(2000)
Finance Stoch.
, vol.4
, pp. 325-341
-
-
Romagnoli, S.1
Vargiolu, T.2
-
65
-
-
82655161001
-
Hedging under arbitrage
-
To appear
-
RUF, J. (2011). Hedging under arbitrage. Math. Finance. To appear.
-
(2011)
Math. Finance
-
-
Ruf, J.1
-
66
-
-
33845939639
-
Optimal investments for risk- and ambiguity-averse preferences: A duality approach
-
MR2284014
-
SCHIED, A. (2007). Optimal investments for risk- and ambiguity-averse preferences: A duality approach. Finance Stoch. 11 107-129. MR2284014
-
(2007)
Finance Stoch.
, vol.11
, pp. 107-129
-
-
Schied, A.1
-
67
-
-
33748650154
-
Duality theory for optimal investments under model uncertainty
-
MR2236457
-
SCHIED, A. and WU, C.-T. (2005). Duality theory for optimal investments under model uncertainty. Statist. Decisions 23 199-217. MR2236457
-
(2005)
Statist. Decisions
, vol.23
, pp. 199-217
-
-
Schied, A.1
Wu, C.-T.2
-
71
-
-
0039827685
-
Controlling a process to a goal in finite time
-
MR1008420
-
SUDDERTH, W. D. and WEERASINGHE, A. (1989). Controlling a process to a goal in finite time. Math. Oper. Res. 14 400-409. MR1008420
-
(1989)
Math. Oper. Res.
, vol.14
, pp. 400-409
-
-
Sudderth, W.D.1
Weerasinghe, A.2
-
72
-
-
30244543364
-
Worst case model risk management
-
MR1932383
-
TALAY, D. and ZHENG, Z. (2002). Worst case model risk management. Finance Stoch. 6 517-537. MR1932383
-
(2002)
Finance Stoch.
, vol.6
, pp. 517-537
-
-
Talay, D.1
Zheng, Z.2
-
76
-
-
84990616983
-
On the regularity theory of fully nonlinear parabolic equations. i
-
MR1135923
-
WANG, L. (1992a). On the regularity theory of fully nonlinear parabolic equations. I. Comm. Pure Appl. Math. 45 27-76. MR1135923
-
(1992)
Comm. Pure Appl. Math.
, vol.45
, pp. 27-76
-
-
Wang, L.1
-
77
-
-
84990619178
-
On the regularity theory of fully nonlinear parabolic equations. II
-
MR1139064
-
WANG, L. (1992b). On the regularity theory of fully nonlinear parabolic equations. II. Comm. Pure Appl. Math. 45 141-178. MR1139064
-
(1992)
Comm. Pure Appl. Math.
, vol.45
, pp. 141-178
-
-
Wang, L.1
-
78
-
-
84990563958
-
On the regularity theory of fully nonlinear parabolic equations. III
-
MR1151267
-
WANG, L. (1992c). On the regularity theory of fully nonlinear parabolic equations. III. Comm. Pure Appl. Math. 45 255-262. MR1151267
-
(1992)
Comm. Pure Appl. Math.
, vol.45
, pp. 255-262
-
-
Wang, L.1
|