메뉴 건너뛰기




Volumn 75, Issue 1, 2012, Pages 199-209

Label-dependent node classification in the network

Author keywords

Bootstrapping; Classification; Classification in networks; Collective classification; Gibbs sampling; Label dependent classification; Label dependent features; LDBootstrapping; LDGibbs; Node classification

Indexed keywords

HYPERTEXT SYSTEMS; WEBSITES;

EID: 82455198660     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2011.04.047     Document Type: Article
Times cited : (41)

References (36)
  • 3
    • 78049271779 scopus 로고    scopus 로고
    • Hybrid intelligent algorithms and applications
    • Corchado E., Abraham A., de Carvalho A.P.L.F. Hybrid intelligent algorithms and applications. Inf. Sci. 2010, 180:2633-2634.
    • (2010) Inf. Sci. , vol.180 , pp. 2633-2634
    • Corchado, E.1    Abraham, A.2    de Carvalho, A.P.L.F.3
  • 4
    • 70350627219 scopus 로고    scopus 로고
    • Within-network classification using local structure similarity, in: Lecture Notes in Computer Science
    • C. Desrosiers, G. Karypis, Within-network classification using local structure similarity, in: Lecture Notes in Computer Science, vol. 5781, 2009, pp. 260-275.
    • (2009) , vol.5781 , pp. 260-275
    • Desrosiers, C.1    Karypis, G.2
  • 7
    • 82455203237 scopus 로고    scopus 로고
    • Leveraging Network Structure to Infer Missing Values in Relational Data, Lawrence Livermore National Laboratory Technical Report UCRL-TR-231993
    • B. Gallagher, T. Eliassi-Rad, Leveraging Network Structure to Infer Missing Values in Relational Data, Lawrence Livermore National Laboratory Technical Report UCRL-TR-231993, 2007.
    • (2007)
    • Gallagher, B.1    Eliassi-Rad, T.2
  • 9
    • 0021518209 scopus 로고
    • Stochastic relaxation Gibbs distributions and the Bayesian restoration of images
    • Geman S., Geman D. Stochastic relaxation Gibbs distributions and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 1984, 6:721-741.
    • (1984) IEEE Trans. Pattern Anal. Mach. Intell. , vol.6 , pp. 721-741
    • Geman, S.1    Geman, D.2
  • 11
    • 70349561502 scopus 로고    scopus 로고
    • An evolutionary approach to query sampling for heterogeneous systems
    • Jung J. An evolutionary approach to query sampling for heterogeneous systems. Expert Syst. Appl. 2010, 37:226-232.
    • (2010) Expert Syst. Appl. , vol.37 , pp. 226-232
    • Jung, J.1
  • 17
    • 0024640140 scopus 로고
    • An algorithm for drawing general undirected graphs
    • Kamada T., Kawai S. An algorithm for drawing general undirected graphs. Inf. Process. Lett. 1989, 31:7-15.
    • (1989) Inf. Process. Lett. , vol.31 , pp. 7-15
    • Kamada, T.1    Kawai, S.2
  • 19
    • 1942515438 scopus 로고    scopus 로고
    • Propositionalization approaches to relational data mining
    • Springer-Verlag, S. Dezeroski (Ed.)
    • Kramer S., Lavrac N., Flach P. Propositionalization approaches to relational data mining. Relational Data Mining 2001, 262-286. Springer-Verlag. S. Dezeroski (Ed.).
    • (2001) Relational Data Mining , pp. 262-286
    • Kramer, S.1    Lavrac, N.2    Flach, P.3
  • 22
    • 34249102504 scopus 로고    scopus 로고
    • Classification in networked data: a toolkit and a univariate case study
    • Macskassy S., Provost F. Classification in networked data: a toolkit and a univariate case study. J. Mach. Learn. Res. 2007, 8:935-983.
    • (2007) J. Mach. Learn. Res. , vol.8 , pp. 935-983
    • Macskassy, S.1    Provost, F.2
  • 30
    • 22944446870 scopus 로고    scopus 로고
    • Aggregation-based feature invention and relational concept classes, in: ACM SIGKDD in the Proceedings of Ninth International Conference on Knowledge Discovery and Data Mining
    • C. Perlich, F. Provost, Aggregation-based feature invention and relational concept classes, in: ACM SIGKDD in the Proceedings of Ninth International Conference on Knowledge Discovery and Data Mining, 2003, pp. 167-176.
    • (2003) , pp. 167-176
    • Perlich, C.1    Provost, F.2
  • 31
    • 32044451133 scopus 로고    scopus 로고
    • Distribution-based aggregation for relational learning with identifier attributes
    • Perlich C., Provost F. Distribution-based aggregation for relational learning with identifier attributes. Mach. Learn. 2006, 62(1-2):65-105.
    • (2006) Mach. Learn. , vol.62 , Issue.1-2 , pp. 65-105
    • Perlich, C.1    Provost, F.2
  • 32
    • 32044466073 scopus 로고    scopus 로고
    • Markov logic networks
    • Richardson M., Domingos P. Markov logic networks. Mach. Learn. 2006, 62(1-2):107-136.
    • (2006) Mach. Learn. , vol.62 , Issue.1-2 , pp. 107-136
    • Richardson, M.1    Domingos, P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.