메뉴 건너뛰기




Volumn 25, Issue , 2012, Pages 130-140

Adaptive object recognition model using incremental feature representation and hierarchical classification

Author keywords

Adaptive object recognition; Hierarchical feature classifier; Incremental feature representation; Incremental learning; Variant feature dimensions

Indexed keywords

ADAPTIVE OBJECT RECOGNITION; FEATURE DIMENSIONS; FEATURE REPRESENTATION; HIERARCHICAL FEATURES; INCREMENTAL LEARNING;

EID: 82355169755     PISSN: 08936080     EISSN: 18792782     Source Type: Journal    
DOI: 10.1016/j.neunet.2011.06.020     Document Type: Article
Times cited : (17)

References (27)
  • 1
    • 0842348111 scopus 로고    scopus 로고
    • A gentle tutorial of the EM algorithm and its application to parameter estimation for Gaussian mixture and hidden Markov models
    • TR-97-021
    • Bilmes J.A. A gentle tutorial of the EM algorithm and its application to parameter estimation for Gaussian mixture and hidden Markov models. International Computer Science Institute 1997, 4:TR-97-021.
    • (1997) International Computer Science Institute , vol.4
    • Bilmes, J.A.1
  • 3
    • 57149144455 scopus 로고    scopus 로고
    • Learning generative visual models from few training examples: an incremental Bayesian approach tested on 101 object categories
    • Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Workshop on Generative-model based vision.
    • Fei-Fei, L., Fergus, R., & Perona, P. 2004. Learning generative visual models from few training examples: an incremental Bayesian approach tested on 101 object categories. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Workshop on Generative-model based vision.
    • (2004)
    • Fei-Fei, L.1    Fergus, R.2    Perona, P.3
  • 5
    • 33745155436 scopus 로고    scopus 로고
    • A Bayesian hierarchical model for learning natural scene categories
    • Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition.
    • Fei-Fei, L., & Perona, P. 2005. A Bayesian hierarchical model for learning natural scene categories. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (pp. 524-531).
    • (2005) , pp. 524-531
    • Fei-Fei, L.1    Perona, P.2
  • 6
    • 0041940256 scopus 로고    scopus 로고
    • Object class recognition by unsupervised scale-invariant learning
    • Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition.
    • Fergus, R., Perona, P., & Zisserman, A. 2003. Object class recognition by unsupervised scale-invariant learning. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (pp. 264-271).
    • (2003) , pp. 264-271
    • Fergus, R.1    Perona, P.2    Zisserman, A.3
  • 7
    • 0028748949 scopus 로고
    • Growing cell structures - A self-organizing network for unsupervised and supervised learning
    • Fritzke B. Growing cell structures - A self-organizing network for unsupervised and supervised learning. Neural Networks 1994, 7:1441-1460.
    • (1994) Neural Networks , vol.7 , pp. 1441-1460
    • Fritzke, B.1
  • 8
    • 0019152630 scopus 로고
    • Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position
    • Fukushima K. Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological Cybernetics 1980, 36:193-202.
    • (1980) Biological Cybernetics , vol.36 , pp. 193-202
    • Fukushima, K.1
  • 9
    • 0037381347 scopus 로고    scopus 로고
    • Neocognitron for handwritten digit recognition
    • Fukushima K. Neocognitron for handwritten digit recognition. Neurocomputing 2003, 51:161-180.
    • (2003) Neurocomputing , vol.51 , pp. 161-180
    • Fukushima, K.1
  • 11
    • 0001331724 scopus 로고
    • RFs and functional architecture of monkey striate cortex
    • Hubel D.H., Wiesel T.N. RFs and functional architecture of monkey striate cortex. Journal of Physiology 1968, 148:574-591.
    • (1968) Journal of Physiology , vol.148 , pp. 574-591
    • Hubel, D.H.1    Wiesel, T.N.2
  • 13
    • 56949086441 scopus 로고    scopus 로고
    • Stereo saliency map considering affective factors and selective motion analysis in a dynamic environment
    • Jeong S., Ban S.-W., Lee M. Stereo saliency map considering affective factors and selective motion analysis in a dynamic environment. Neural networks 2008, 21:1420-1430.
    • (2008) Neural networks , vol.21 , pp. 1420-1430
    • Jeong, S.1    Ban, S.-W.2    Lee, M.3
  • 15
    • 84858439553 scopus 로고    scopus 로고
    • A vector quantization approach for life-long learning of categories
    • Proceedings of the International Conference on Neuro- Information Processing, Special Session. Lifelong Incremental Learning for Intelligent Systems.
    • Kirstein, S., Wersing, H., Gross, H., & Körner, E. 2008. A vector quantization approach for life-long learning of categories. In Proceedings of the International Conference on Neuro- Information Processing, Special Session. Lifelong Incremental Learning for Intelligent Systems.
    • (2008)
    • Kirstein, S.1    Wersing, H.2    Gross, H.3    Körner, E.4
  • 16
    • 0036789790 scopus 로고    scopus 로고
    • A self-organising network that grows when required
    • Marsland S., Shapiro J., Nehmzow U. A self-organising network that grows when required. Neural Networks 2002, 15:1041-1058.
    • (2002) Neural Networks , vol.15 , pp. 1041-1058
    • Marsland, S.1    Shapiro, J.2    Nehmzow, U.3
  • 17
    • 82355194956 scopus 로고    scopus 로고
    • A neural network model for sequential multitask pattern recognition problems
    • Proceedings of the International Conference on Neuro- Information Processing, Special Session, Lifelong Incremental Learning for Intelligent Systems.
    • Nishikawa, H., Ozawa, S., & Roy, A. 2008. A neural network model for sequential multitask pattern recognition problems. In Proceedings of the International Conference on Neuro- Information Processing, Special Session, Lifelong Incremental Learning for Intelligent Systems.
    • (2008)
    • Nishikawa, H.1    Ozawa, S.2    Roy, A.3
  • 19
    • 0036952541 scopus 로고    scopus 로고
    • Saliency map model with adaptive masking based on independent component analysis
    • Park S.J., An K.H., Lee M. Saliency map model with adaptive masking based on independent component analysis. Neurocomputing 2002, 49:417-422.
    • (2002) Neurocomputing , vol.49 , pp. 417-422
    • Park, S.J.1    An, K.H.2    Lee, M.3
  • 20
    • 84931357890 scopus 로고    scopus 로고
    • Biologically inspired saliency map model for bottom-up visual attention
    • Park S.J., Shin J.K., Lee M. Biologically inspired saliency map model for bottom-up visual attention. Lecture Notes in Computer Science 2002, 2525:418-426.
    • (2002) Lecture Notes in Computer Science , vol.2525 , pp. 418-426
    • Park, S.J.1    Shin, J.K.2    Lee, M.3
  • 21
    • 0033316361 scopus 로고    scopus 로고
    • Hierarchical models of object recognition in cortex
    • Riesenhuber M., Poggio T. Hierarchical models of object recognition in cortex. Nature Neuroscience 1999, 2(11):1019-1025.
    • (1999) Nature Neuroscience , vol.2 , Issue.11 , pp. 1019-1025
    • Riesenhuber, M.1    Poggio, T.2
  • 22
    • 24644511277 scopus 로고    scopus 로고
    • Object recognition with features inspired by visual cortex
    • Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 994-1000.
    • Serre, T., Wolf, L., & Poggio, T. 2005. Object recognition with features inspired by visual cortex. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 994-1000.
    • (2005)
    • Serre, T.1    Wolf, L.2    Poggio, T.3
  • 24
    • 0034938990 scopus 로고    scopus 로고
    • Complex objects are represented in macaque inferotemporal cortex by the combination of feature columns
    • Tsunoda K., Yamane Y., Nishizaki M., Tanifuji M. Complex objects are represented in macaque inferotemporal cortex by the combination of feature columns. Nature neuroscience 2001, 4(8):832-838.
    • (2001) Nature neuroscience , vol.4 , Issue.8 , pp. 832-838
    • Tsunoda, K.1    Yamane, Y.2    Nishizaki, M.3    Tanifuji, M.4
  • 25
    • 24644479275 scopus 로고    scopus 로고
    • Generative versus discriminative methods for object recognition
    • Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2, 258-265.
    • Ulusoy, L., & Bishop, C.M. 2005. Generative versus discriminative methods for object recognition. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2, 258-265.
    • (2005)
    • Ulusoy, L.1    Bishop, C.M.2
  • 27
    • 82355183562 scopus 로고    scopus 로고
    • Dynamic obstacle identification based on global and local features for a driver assistance system
    • Neural Computing & Applications [On-line serial].
    • Woo, J.-W., Lim, Y.-C., & Lee, M. 2010. Dynamic obstacle identification based on global and local features for a driver assistance system. Neural Computing & Applications [On-line serial].
    • (2010)
    • Woo, J.-W.1    Lim, Y.-C.2    Lee, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.