-
1
-
-
34249684901
-
Some exact solutions of the variable coefficient Schrodinger equation
-
DOI 10.1016/j.cnsns.2006.01.009, PII S1007570406000190
-
X.Q. Liu Z.L. Yan 2007 Some exact solutions of the variable coefficient Schrödinger equation Commun. Nonlinear Sci. Numer. Simul. 12 1355 1359 2332636 1118.35356 10.1016/j.cnsns.2006.01.009 (Pubitemid 46832140)
-
(2007)
Communications in Nonlinear Science and Numerical Simulation
, vol.12
, Issue.8
, pp. 1355-1359
-
-
Liu, X.-Q.1
Yan, Z.-L.2
-
2
-
-
40949140530
-
An extended sub-equation rational expansion method with symbolic computation and solutions of the nonlinear Schrödinger equation model
-
2400948 1156.35469 10.1016/j.nahs.2006.04.008
-
Y. Chen B. Li 2008 An extended sub-equation rational expansion method with symbolic computation and solutions of the nonlinear Schrödinger equation model Nonlinear Anal. Hybrid Syst. 2 242 255 2400948 1156.35469 10.1016/j.nahs.2006.04.008
-
(2008)
Nonlinear Anal. Hybrid Syst.
, vol.2
, pp. 242-255
-
-
Chen, Y.1
Li, B.2
-
3
-
-
28844493562
-
Generation, compression, and propagation of pulse trains in the nonlinear Schrödinger equation with distributed coefficients
-
DOI 10.1103/PhysRevE.72.036614, 036614
-
L.Y. Wang L. Li Z.H. Li G.S. Zhou 2005 Generation, compression, and propagation of pulse trains in the nonlinear Schrödinger equation with distributed coefficients Phys. Rev. E 72 036614 10.1103/PhysRevE.72.036614 (Pubitemid 41778226)
-
(2005)
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
, vol.72
, Issue.3
, pp. 1-7
-
-
Wang, L.1
Li, L.2
Li, Z.3
Zhou, G.4
Mihalache, D.5
-
4
-
-
22544471562
-
Variable-coefficient F-expansion method and its application to nonlinear Schrödinger equation
-
DOI 10.1016/j.optcom.2005.04.043, PII S0030401805003895
-
J.F. Zhang C.Q. Dai Q. Yang J.M. Zhu 2005 Variable-coefficient F-expansion method and its application to nonlinear Schrödinger equation Opt. Commun. 252 408 421 10.1016/j.optcom.2005.04.043 (Pubitemid 41014047)
-
(2005)
Optics Communications
, vol.252
, Issue.4-6
, pp. 408-421
-
-
Zhang, J.-F.1
Dai, C.-Q.2
Yang, Q.3
Zhu, J.-M.4
-
5
-
-
20544460901
-
Symbolic-computation study of the perturbed nonlinear Schrödinger model in inhomogeneous optical fibers
-
DOI 10.1016/j.physleta.2005.05.041, PII S0375960105007577
-
B. Tian Y.T. Gao 2005 Symbolic-computation study of the perturbed nonlinear Schrödinger model in inhomogeneous optical fibers Phys. Lett. A 342 228 236 1222.78043 10.1016/j.physleta.2005.05.041 (Pubitemid 40840533)
-
(2005)
Physics Letters, Section A: General, Atomic and Solid State Physics
, vol.342
, Issue.3
, pp. 228-236
-
-
Tian, B.1
Gao, Y.-T.2
-
6
-
-
62549136973
-
The exact solutions and the relevant constraint conditions for two nonlinear Schrödinger equations with variable coefficients
-
2518925 1197.35278 10.1016/j.chaos.2007.01.116
-
J.L. Zhang B.A. Li M.L. Wang 2009 The exact solutions and the relevant constraint conditions for two nonlinear Schrödinger equations with variable coefficients Chaos Solitons Fractals 39 858 865 2518925 1197.35278 10.1016/j.chaos.2007.01.116
-
(2009)
Chaos Solitons Fractals
, vol.39
, pp. 858-865
-
-
Zhang, J.L.1
Li, B.A.2
Wang, M.L.3
-
7
-
-
50049125795
-
1-soliton solution of (1+2)-dimensional nonlinear Schrödinger equation in dual power law media
-
2458894 1223.35266 10.1016/j.physleta.2008.07.052
-
A. Biswas 2008 1-soliton solution of (1+2)-dimensional nonlinear Schrödinger equation in dual power law media Phys. Lett. A 372 5941 5943 2458894 1223.35266 10.1016/j.physleta.2008.07.052
-
(2008)
Phys. Lett. A
, vol.372
, pp. 5941-5943
-
-
Biswas, A.1
-
8
-
-
77950864157
-
New soliton and periodic solutions of (1+2)-dimensional nonlinear Schrödinger equation with dual-power law nonlinearity
-
2610617 1222.35192 10.1016/j.cnsns.2009.10.028
-
L.H. Zhang J.G. Si 2010 New soliton and periodic solutions of (1+2)-dimensional nonlinear Schrödinger equation with dual-power law nonlinearity Commun. Nonlinear Sci. Numer. Simul. 15 2747 2754 2610617 1222.35192 10.1016/j.cnsns.2009.10.028
-
(2010)
Commun. Nonlinear Sci. Numer. Simul.
, vol.15
, pp. 2747-2754
-
-
Zhang, L.H.1
Si, J.G.2
-
9
-
-
56049101132
-
1-soliton solution of (1+2)-dimensional nonlinear Schrödinger equation in power law media
-
1221.78031 10.1016/j.cnsns.2008.08.003
-
A. Biswas 2009 1-soliton solution of (1+2)-dimensional nonlinear Schrödinger equation in power law media Commun. Nonlinear Sci. Numer. Simul. 14 1830 1833 1221.78031 10.1016/j.cnsns.2008.08.003
-
(2009)
Commun. Nonlinear Sci. Numer. Simul.
, vol.14
, pp. 1830-1833
-
-
Biswas, A.1
-
10
-
-
33747336527
-
Various exact solutions of nonlinear Schrödinger equation with two nonlinear terms
-
DOI 10.1016/j.chaos.2005.10.009, PII S096007790500963X
-
M.L. Wang X.Z. Li J.L. Zhang 2007 Various exact solutions of nonlinear Schrödinger equation with two nonlinear terms Chaos Solitons Fractals 31 594 601 2262293 1138.35411 10.1016/j.chaos.2005.10.009 (Pubitemid 44247629)
-
(2007)
Chaos, Solitons and Fractals
, vol.31
, Issue.3
, pp. 594-601
-
-
Wang, M.1
Li, X.2
Zhang, J.3
-
11
-
-
33644522735
-
Reliable analysis for nonlinear Schrödinger equations with a cubic nonlinearity and a power law nonlinearity
-
DOI 10.1016/j.mcm.2005.06.013, PII S0895717705004954
-
A.M. Wazwaz 2006 Reliable analysis for nonlinear Schrödinger equations with a cubic nonlinearity and a power law nonlinearity Math. Comput. Model. 43 178 184 2206700 1094.35122 10.1016/j.mcm.2005.06.013 (Pubitemid 43294579)
-
(2006)
Mathematical and Computer Modelling
, vol.43
, Issue.1-2
, pp. 178-184
-
-
Wazwaz, A.-M.1
-
15
-
-
84980148156
-
Periodic solutions of the Korteweg-de Vries equation
-
369963 0295.35004 10.1002/cpa.3160280105
-
P.D. Lax 1975 Periodic solutions of the Korteweg-de Vries equation Commun. Pure Appl. Math. 28 141 188 369963 0295.35004 10.1002/cpa.3160280105
-
(1975)
Commun. Pure Appl. Math.
, vol.28
, pp. 141-188
-
-
Lax, P.D.1
-
16
-
-
77957752397
-
Symmetry Results for decay solutions of Elliptic Systems in the Whole Space
-
2729001 1202.35080 10.1016/j.aim.2010.05.022
-
L. Ma B.Y. Liu 2010 Symmetry Results for decay solutions of Elliptic Systems in the Whole Space Adv. Math. 225 3052 3063 2729001 1202.35080 10.1016/j.aim.2010.05.022
-
(2010)
Adv. Math.
, vol.225
, pp. 3052-3063
-
-
Ma, L.1
Liu, B.Y.2
|