-
3
-
-
0011509320
-
Approximation of method of regularization estimators
-
COX, D. D. (1988). Approximation of method of regularization estimators. Ann. Statist. 16, 694-712.
-
(1988)
Ann. Statist.
, vol.16
, pp. 694-712
-
-
Cox, D.D.1
-
4
-
-
0000871407
-
Fitting variogram models by weighted least squares
-
CRESSIE, N. (1985). Fitting variogram models by weighted least squares. J. Int. Assoc. Math. Geol. 17, 563-86.
-
(1985)
J. Int. Assoc. Math. Geol.
, vol.17
, pp. 563-86
-
-
Cressie, N.1
-
8
-
-
0042401905
-
Spectral methods for nonstationary spatial processes
-
DOI 10.1093/biomet/89.1.197
-
FUENTES, M. (2002). Spectral methods for nonstationary spatial processes. Biometrika 89, 197-210. (Pubitemid 41312011)
-
(2002)
Biometrika
, vol.89
, Issue.1
, pp. 197-210
-
-
Fuentes, M.1
-
9
-
-
33947194951
-
Approximate likelihood for large irregularly spaced spatial data
-
FUENTES, M. (2007). Approximate likelihood for large irregularly spaced spatial data. J. Am. Statist. Assoc. 102, 321-31.
-
(2007)
J. Am. Statist. Assoc.
, vol.102
, pp. 321-31
-
-
Fuentes, M.1
-
13
-
-
21844525784
-
On the nonparametric estimation of covariance functions
-
HALL, P., FISHER, N. I. & HOFFMANN, B. (1994). On the nonparametric estimation of covariance functions. Ann. Statist. 22, 2115-34.
-
(1994)
Ann. Statist.
, vol.22
, pp. 2115-34
-
-
Hall, P.1
Fisher, N.I.2
Hoffmann, B.3
-
14
-
-
79958272761
-
Spectral density estimation through a regularized-inverse problem
-
HUANG, C., HSING, T. & CRESSIE, N. (2011). Spectral density estimation through a regularized-inverse problem. Statist. Sinica 21, 1115-44.
-
(2011)
Statist. Sinica
, vol.21
, pp. 1115-44
-
-
Huang, C.1
Hsing, T.2
Cressie, N.3
-
15
-
-
34250769924
-
Semiparametric estimation of spectral density with irregular observations
-
IM, H. K., STEIN, M. L. & ZHU, Z. (2007). Semiparametric estimation of spectral density with irregular observations. J. Am. Statist. Assoc. 102, 726-35.
-
(2007)
J. Am. Statist. Assoc.
, vol.102
, pp. 726-35
-
-
H, K.I.M.1
Stein, M.L.2
Zhu, Z.3
-
17
-
-
84966254921
-
Convergence rates for regularized solutions
-
LUKAS, M. A. (1988). Convergence rates for regularized solutions. Math. Comp. 51, 101-37.
-
(1988)
Math. Comp.
, vol.51
, pp. 101-37
-
-
Lukas, M.A.1
-
18
-
-
84865486245
-
Principles of geostatistics
-
MATHERON, G. (1963). Principles of geostatistics. Econ. Geol. 58, 1246-63.
-
(1963)
Econ. Geol.
, vol.58
, pp. 1246-63
-
-
Matheron, G.1
-
19
-
-
0015764255
-
The intrinsic random functions and their applications
-
MATHERON, G. (1973). The intrinsic random functions and their applications. Adv. Appl. Prob. 5, 439-68.
-
(1973)
Adv. Appl. Prob.
, vol.5
, pp. 439-68
-
-
Matheron, G.1
-
20
-
-
58149345980
-
Fourier analysis of irregularily spaced data on R d
-
MATSUDA, Y. & YAJIMA, Y. (2009). Fourier analysis of irregularily spaced data on Rd . J. R. Statist. Soc. B 71, 191-217.
-
(2009)
J. R. Statist. Soc. B
, vol.71
, pp. 191-217
-
-
Matsuda, Y.1
Yajima, Y.2
-
21
-
-
0000823716
-
Convergence rates for regularized solutions of integral equalities from discrete noisy data
-
NYCHKA, D. & COX, D. D. (1989). Convergence rates for regularized solutions of integral equalities from discrete noisy data. Ann. Statist. 17, 556-72.
-
(1989)
Ann. Statist.
, vol.17
, pp. 556-72
-
-
Nychka, D.1
Cox, D.D.2
-
22
-
-
0000024574
-
Cross-validated spline methods for the estimation of three-dimensional tumor size distribution from observations on two-dimensional cross sections
-
NYCHKA, D., WAHBA, G., GOLDFARB, S. & PUGH, T. (1984). Cross-validated spline methods for the estimation of three-dimensional tumor size distribution from observations on two-dimensional cross sections. J. Am. Statist. Assoc. 79, 832-46.
-
(1984)
J. Am. Statist. Assoc.
, vol.79
, pp. 832-46
-
-
Nychka, D.1
Wahba, G.2
Goldfarb, S.3
Pugh, T.4
-
23
-
-
0037856056
-
The variogram and its estimation
-
Ed. G. Verly, M. David, A. Journel and A. Marechal,. Dordrecht: Reidel
-
OMRE, H. (1984). The variogram and its estimation. In Geostatistics for Natural Resources Characterization, Part I, Ed. G. Verly, M. David, A. Journel and A. Marechal, pp. 107-125. Dordrecht: Reidel.
-
(1984)
Geostatistics for Natural Resources Characterization, Part i
, pp. 107-125
-
-
Omre, H.1
-
24
-
-
84972545853
-
A statistical perspective on ill-posed inverse problems
-
O'SULLIVAN, F. (1986). A statistical perspective on ill-posed inverse problems. Statist. Sci. 1, 502-27.
-
(1986)
Statist. Sci.
, vol.1
, pp. 502-27
-
-
O'Sullivan, F.1
-
25
-
-
47649122279
-
Isotropic spectral additive models of the covariogram
-
POWOJOWSKI, M. R. (2008). Isotropic spectral additive models of the covariogram. J. R. Statist. Soc. B 70, 739-53.
-
(2008)
J. R. Statist. Soc. B
, vol.70
, pp. 739-53
-
-
Powojowski, M.R.1
-
26
-
-
0004161838
-
-
3rd ed. Cambridge: Cambridge University Press
-
PRESS, W. H., TEUKOLSKY, S., VETTERLING, W. T. & FLANNERY, B. (2007). Numerical Recipes: The Art of Scientific Computing, 3rd ed. Cambridge: Cambridge University Press.
-
(2007)
Numerical Recipes: The Art of Scientific Computing
-
-
Press, W.H.1
Teukolsky, S.2
Vetterling, W.T.3
Flannery, B.4
-
27
-
-
33847636682
-
Spectral corrected semivariogram models
-
DOI 10.1007/s11004-006-9053-9
-
PYRCZ, M. J. & DEUTSCH, C. V. (2006). Spectral corrected semivariogram models. Math. Geol. 38, 891-9. (Pubitemid 46351362)
-
(2006)
Mathematical Geology
, vol.38
, Issue.7
, pp. 891-899
-
-
Pyrcz, M.J.1
Deutsch, C.V.2
-
28
-
-
0000832522
-
Nonparametric estimation of nonstationary spatial covariance structure
-
SAMPSON, P. & GUTTORP, P. (1992). Nonparametric estimation of nonstationary spatial covariance structure. J. Am. Statist. Assoc. 87, 108-19.
-
(1992)
J. Am. Statist. Assoc.
, vol.87
, pp. 108-19
-
-
Sampson, P.1
Guttorp, P.2
-
29
-
-
0026289910
-
Variogram fitting with a general class of conditionally nonnegative definite functions
-
SHAPIRO, A. & BOTHA, J. D. (1991). Variogram fitting with a general class of conditionally nonnegative definite functions. Comp. Statist. Data Anal. 11, 87-96.
-
(1991)
Comp. Statist. Data Anal.
, vol.11
, pp. 87-96
-
-
Shapiro, A.1
Botha, J.D.2
-
30
-
-
0036970587
-
Nonparametric hypothesis testing for a spatial signal
-
DOI 10.1198/016214502388618933
-
SHEN, X., HUANG, H. C. & CRESSIE, N. (2002). Nonparametric hypothesis testing for a spatial signal. J. Am. Statist. Assoc. 97, 1122-40. (Pubitemid 36136571)
-
(2002)
Journal of the American Statistical Association
, vol.97
, Issue.460
, pp. 1122-1140
-
-
Shen, X.1
Huang, H.-C.2
Cressie, N.3
-
32
-
-
0000148392
-
Inequality constrained multivariate smoothing splines with application to the estimation of posterior probabilities
-
VILLALOBOS, M. & WAHBA, G. (1987). Inequality constrained multivariate smoothing splines with application to the estimation of posterior probabilities. J. Am. Statist. Assoc. 82, 239-48.
-
(1987)
J. Am. Statist. Assoc.
, vol.82
, pp. 239-48
-
-
Villalobos, M.1
Wahba, G.2
-
33
-
-
7344220457
-
Convergence rates of certain approximation solution to Fredholm integral equations of the first kind
-
WAHBA, G. (1973). Convergence rates of certain approximation solution to Fredholm integral equations of the first kind. SIAM J. Contr. 11, 64-79.
-
(1973)
SIAM J. Contr.
, vol.11
, pp. 64-79
-
-
Wahba, G.1
-
35
-
-
0032336499
-
Smoothing spline models with correlated random errors
-
WANG, Y. (1998). Smoothing spline models with correlated random errors. J. Am. Statist. Assoc. 93, 341-8.
-
(1998)
J. Am. Statist. Assoc.
, vol.93
, pp. 341-8
-
-
Wang, Y.1
-
37
-
-
34247637687
-
A kernel-based method for nonparametric estimation of variogram
-
YU, K., MATEU, J. & PORCU, E. (2007). A kernel-based method for nonparametric estimation of variogram. Statist. Neer. 61, 173-97.
-
(2007)
Statist. Neer.
, vol.61
, pp. 173-97
-
-
Y, U.K.1
Mateu, J.2
Porcu, E.3
-
38
-
-
46749151367
-
Loss function approaches to predict a spatial quantile and its exceedance region
-
ZHANG, J., CRAIGMILE, P. & CRESSIE, N. (2008). Loss function approaches to predict a spatial quantile and its exceedance region. Technometrics 50, 216-27.
-
(2008)
Technometrics
, vol.50
, pp. 216-27
-
-
Zhang, J.1
Craigmile, P.2
Cressie, N.3
|