-
1
-
-
0000241853
-
Deterministic nonperiodic flow
-
10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
-
E.N. Lorenz 1963 Deterministic nonperiodic flow J. Atmos. Sci. 20 130 141 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
-
(1963)
J. Atmos. Sci.
, vol.20
, pp. 130-141
-
-
Lorenz, E.N.1
-
2
-
-
49549126801
-
An equation for continuous chaos
-
10.1016/0375-9601(76)90101-8
-
O.E. Rössler 1976 An equation for continuous chaos Phys. Lett. A 57 397 398 10.1016/0375-9601(76)90101-8
-
(1976)
Phys. Lett. A
, vol.57
, pp. 397-398
-
-
Rössler, O.E.1
-
7
-
-
0001628202
-
Drive-response scenario of chaos synchronization in identical nonlinear system
-
10.1103/PhysRevE.49.4882
-
K. Murali M. Lakshmanan 1994 Drive-response scenario of chaos synchronization in identical nonlinear system Phys. Rev. E 49 4482 4485 10.1103/PhysRevE.49.4882
-
(1994)
Phys. Rev. e
, vol.49
, pp. 4482-4485
-
-
Murali, K.1
Lakshmanan, M.2
-
8
-
-
0001079677
-
Secure communication using a compound signal from generalized synchronizable chaotic systems
-
PII S0375960198001595
-
K. Murali M. Lakshmanan 1998 Secure communication using a compound signal from generalized synchronizable chaotic system Phys. Lett. A 241 303 10 0933.94023 10.1016/S0375-9601(98)00159-5 (Pubitemid 128393587)
-
(1998)
Physics Letters, Section A: General, Atomic and Solid State Physics
, vol.241
, Issue.6
, pp. 303-310
-
-
Murali, K.1
Lakshmanan, M.2
-
11
-
-
1342275514
-
A survey of chaotic secure communication systems
-
T. Yang 2004 A survey of chaotic secure communication systems Int. J. Comput. Cogn. 2 81 130
-
(2004)
Int. J. Comput. Cogn.
, vol.2
, pp. 81-130
-
-
Yang, T.1
-
13
-
-
0037440586
-
Adaptive control and synchronization of a modified Chua's circuit system
-
1934320 1038.34041 10.1016/S0096-3003(01)00318-6
-
M.T. Yassen 2003 Adaptive control and synchronization of a modified Chua's circuit system Appl. Math. Comput. 135 113 28 1934320 1038.34041 10.1016/S0096-3003(01)00318-6
-
(2003)
Appl. Math. Comput.
, vol.135
, pp. 113-28
-
-
Yassen, M.T.1
-
14
-
-
3142716961
-
Chaos synchronization between two different chaotic system using active control
-
2101570 1091.93520 10.1016/j.chaos.2004.03.038
-
M.T. Yassen 2005 Chaos synchronization between two different chaotic system using active control Chaos Solitons Fractals 23 131 40 2101570 1091.93520 10.1016/j.chaos.2004.03.038
-
(2005)
Chaos Solitons Fractals
, vol.23
, pp. 131-40
-
-
Yassen, M.T.1
-
15
-
-
0034823585
-
Adaptive synchronization of uncertain chaotic systems via backstepping design
-
DOI 10.1016/S0960-0779(00)00089-8
-
C. Wang S. Ge 2001 Adaptive synchronization of uncertain chaotic systems via backstepping design Chaos Solitons Fractals 12 1199 206 1015.37052 10.1016/S0960-0779(00)00089-8 (Pubitemid 32874374)
-
(2001)
Chaos, solitons and fractals
, vol.12
, Issue.7
, pp. 1199-1206
-
-
Wang, C.1
Ge, S.S.2
-
16
-
-
20444487718
-
Synchronization of chaotic systems with parameter driven by a chaotic signal
-
DOI 10.1016/j.chaos.2005.04.012, PII S0960077905003139
-
G.-H. Li 2005 Synchronization of chaotic systems with parameter driven by a chaotic signal Chaos Solitons Fractals 26 1485 9 1098.37523 10.1016/j.chaos.2005.04.012 (Pubitemid 40821877)
-
(2005)
Chaos, Solitons and Fractals
, vol.26
, Issue.5
, pp. 1485-1489
-
-
Li, G.-H.1
-
17
-
-
65349115335
-
A note on synchronization between two different chaotic systems
-
1197.93128 10.1016/j.chaos.2007.09.038
-
J.H. Park 2009 A note on synchronization between two different chaotic systems Chaos Solitons Fractals 40 1538 1544 1197.93128 10.1016/j.chaos.2007.09. 038
-
(2009)
Chaos Solitons Fractals
, vol.40
, pp. 1538-1544
-
-
Park, J.H.1
-
18
-
-
65349124119
-
∞ synchronization of unified chaotic systems
-
1179.37123 10.1142/S021798490901934X
-
∞ synchronization of unified chaotic systems Mod. Phys. Lett. B 23 1157 1169 1179.37123 10.1142/ S021798490901934X
-
(2009)
Mod. Phys. Lett. B
, vol.23
, pp. 1157-1169
-
-
Park, J.H.1
-
19
-
-
0026791711
-
Chaos in models of double convection
-
1161996 0747.76089 10.1017/S0022112092003392
-
A.M. Rucklidge 1992 Chaos in models of double convection J. Fluid Mech. 237 209 229 1161996 0747.76089 10.1017/S0022112092003392
-
(1992)
J. Fluid Mech.
, vol.237
, pp. 209-229
-
-
Rucklidge, A.M.1
-
20
-
-
0036696341
-
On a generalized Lorenz canonical form of chaotic systems
-
1043.37023 10.1142/S0218127402005467
-
S. Čelikovský G. Chen 2002 On a generalized Lorenz canonical form of chaotic systems Int. J. Bifurc. Chaos 12 1789 1812 1043.37023 10.1142/S0218127402005467
-
(2002)
Int. J. Bifurc. Chaos
, vol.12
, pp. 1789-1812
-
-
Čelikovský, S.1
Chen, G.2
-
21
-
-
14544275749
-
Hyperbolic-type generalized Lorenz system and its canonical form
-
Barcelona, Spain, in CD ROM
-
Čelikovský, S., Chen, G.: Hyperbolic-type generalized Lorenz system and its canonical form. In: Proc. 15th Triennial World Congress of IFAC, Barcelona, Spain (2002), in CD ROM
-
(2002)
Proc. 15th Triennial World Congress of IFAC
-
-
Čelikovský, S.1
Chen, G.2
-
22
-
-
20444502538
-
On the generalized Lorenz canonical form
-
DOI 10.1016/j.chaos.2005.02.040, PII S0960077905001931
-
S. Čelikovský G. Chen 2005 On the generalized Lorenz canonical form Chaos Solitons Fractals 26 1271 1276 2149315 1100.37016 10.1016/j.chaos.2005.02.040 (Pubitemid 40821855)
-
(2005)
Chaos, Solitons and Fractals
, vol.26
, Issue.5
, pp. 1271-1276
-
-
Celikovsky, S.1
Chen, G.2
|