메뉴 건너뛰기




Volumn 32, Issue 24, 2011, Pages 9207-9217

Modified nearest neighbour classifier for hyper spectral data classification

Author keywords

[No Author keywords available]

Indexed keywords

BACKPROPAGATION; FUZZY FILTERS; NEAREST NEIGHBOR SEARCH; NEURAL NETWORKS; REMOTE SENSING; TEXT PROCESSING; TORSIONAL STRESS;

EID: 82155179334     PISSN: 01431161     EISSN: 13665901     Source Type: Journal    
DOI: 10.1080/01431161.2010.550651     Document Type: Article
Times cited : (6)

References (37)
  • 1
    • 0025453627 scopus 로고
    • Neural network approaches versus statistical methods in classification of multi source remote sensing data
    • BENEDIKTSSON, J.A., SWAIN, P.H. and ERSOY, O.K., 1990, Neural network approaches versus statistical methods in classification of multi source remote sensing data. IEEE Transactions on Geoscience and Remote Sensing, 28, pp. 540-551.
    • (1990) IEEE Transactions On Geoscience and Remote Sensing , vol.28 , pp. 540-551
    • Benediktsson, J.A.1    Swain, P.H.2    Ersoy, O.K.3
  • 3
    • 0027525734 scopus 로고
    • Artificial neural networks for land-cover classification and mapping
    • CIVCO, D.L., 1993, Artificial neural networks for land-cover classification and mapping. International Journal of Geographic Information Systems, 7, pp. 173-183.
    • (1993) International Journal of Geographic Information Systems , vol.7 , pp. 173-183
    • Civco, D.L.1
  • 4
    • 3042661357 scopus 로고    scopus 로고
    • Thematic map comparison: Evaluating the statistical significance of differences in classification accuracy
    • FOODY, G.M., 2004, Thematic map comparison: evaluating the statistical significance of differences in classification accuracy. Photogrammetric Engineering and Remote Sensing, 70, pp. 627-633.
    • (2004) Photogrammetric Engineering and Remote Sensing , vol.70 , pp. 627-633
    • Foody, G.M.1
  • 5
    • 67349093551 scopus 로고    scopus 로고
    • Classification accuracy comparison: Hypothesis tests and the use of confidence intervals in evaluations of difference, equivalence and non-inferiority
    • FOODY, G.M., 2009, Classification accuracy comparison: hypothesis tests and the use of confidence intervals in evaluations of difference, equivalence and non-inferiority. Remote Sensing of Environment, 113, pp. 1658-1663.
    • (2009) Remote Sensing of Environment , vol.113 , pp. 1658-1663
    • Foody, G.M.1
  • 6
    • 0031105722 scopus 로고    scopus 로고
    • An evaluation of some factors affecting the accuracy of classification by an artificial neural network
    • FOODY, G.M. and ARORA, M.K., 1997, An evaluation of some factors affecting the accuracy of classification by an artificial neural network. International Journal of Remote Sensing, 18, pp. 799-810.
    • (1997) International Journal of Remote Sensing , vol.18 , pp. 799-810
    • Foody, G.M.1    Arora, M.K.2
  • 7
    • 0034814349 scopus 로고    scopus 로고
    • Estimation and mapping of forest stand density, volume, and cover type using the k-nearest neighbours method
    • FRANCO LOPEZ, H., EK, A.R. and BAUER, M.E., 2001, Estimation and mapping of forest stand density, volume, and cover type using the k-nearest neighbours method. Remote Sensing of Environment, 77, pp. 251-274.
    • (2001) Remote Sensing of Environment , vol.77 , pp. 251-274
    • Franco, L.H.1    Ek, A.R.2    Bauer, M.E.3
  • 8
    • 78649934709 scopus 로고    scopus 로고
    • Irvine, CA: University of California, School of Information and Computer Science
    • FRANK, A. and ASUNCION, A., 2010, UCI machine learning repository. Irvine, CA: University of California, School of Information and Computer Science. Available online at: http://archive.ics.uci.edu/ml
    • (2010) UCI Machine Learning Repository
    • Frank, A.1    Asuncion, A.2
  • 9
    • 33749265708 scopus 로고    scopus 로고
    • Center-based nearest neighbor classifier
    • GAO, Q.B and WANG, Z.Z., 2007, Center-based nearest neighbor classifier. Pattern Recognition, 4, pp. 346-349.
    • (2007) Pattern Recognition , vol.4 , pp. 346-349
    • Gao, Q.B.1    Wang, Z.Z.2
  • 10
    • 34548405471 scopus 로고    scopus 로고
    • Accuracy of forest mapping based on Landsat TM data and a kNN based method
    • GJERTSEN, A.K., 2007, Accuracy of forest mapping based on Landsat TM data and a kNN based method. Remote Sensing of Environment, 110, pp. 420-430.
    • (2007) Remote Sensing of Environment , vol.110 , pp. 420-430
    • Gjertsen, A.K.1
  • 11
    • 0842327896 scopus 로고    scopus 로고
    • Delineation of forest/ nonforest land use classes using nearest neighbor methods
    • HAAPAMENN, R., EK, A.R., BAUER, M.E. and FINLEY, A.O., 2004, Delineation of forest/ nonforest land use classes using nearest neighbor methods. Remote Sensing of Environment, 89, pp. 265-271.
    • (2004) Remote Sensing of Environment , vol.89 , pp. 265-271
    • Haapamenn, R.1    Ek, A.R.2    Bauer, M.E.3    Finley, A.O.4
  • 13
    • 0026678254 scopus 로고
    • Classification of multispectral remote sensing data using a backpropagation neural network
    • HEERMANN, P.D. and KHAZENIE, N., 1992, Classification of multispectral remote sensing data using a backpropagation neural network. IEEE Transactions on Geoscience and Remote Sensing, 30, pp. 81-88.
    • (1992) IEEE Transactions On Geoscience and Remote Sensing , vol.30 , pp. 81-88
    • Heermann, P.D.1    Khazenie, N.2
  • 14
    • 0025573206 scopus 로고
    • Artificial neural network classification using a minimal training set: Comparison to conventional supervised classification
    • HEPNER, G.F., LOGAN, T., RITTER, N. and BRYANT, N., 1990, Artificial neural network classification using a minimal training set: comparison to conventional supervised classification. Photogrammetric Engineering and Remote Sensing, 56, pp. 469-473.
    • (1990) Photogrammetric Engineering and Remote Sensing , vol.56 , pp. 469-473
    • Hepner, G.F.1    Logan, T.2    Ritter, N.3    Bryant, N.4
  • 16
    • 32644440353 scopus 로고    scopus 로고
    • Information-preserving hybrid data reduction based on fuzzy-rough techniques
    • HU, Q., YU, D. and XIE, Z., 2006, Information-preserving hybrid data reduction based on fuzzy-rough techniques. Pattern Recognition Letters, 27, pp. 414-423.
    • (2006) Pattern Recognition Letters , vol.27 , pp. 414-423
    • Hu, Q.1    Yu, D.2    Xie, Z.3
  • 17
    • 0023523393 scopus 로고
    • Maximum likelihood classification, optimal or problematic? A comparison with the nearest neighbour classification
    • INCE, F., 1987, Maximum likelihood classification, optimal or problematic? A comparison with the nearest neighbour classification. International Journal of Remote Sensing, 8, pp. 1829-1838.
    • (1987) International Journal of Remote Sensing , vol.8 , pp. 1829-1838
    • Ince, F.1
  • 18
  • 19
    • 0030855587 scopus 로고    scopus 로고
    • Decision boundary feature extraction for neural networks
    • LEE, C. and LANDGREBE, D.A., 1997, Decision boundary feature extraction for neural networks. IEEE Transactions on Neural Networks, 8, pp. 75-83.
    • (1997) IEEE Transactions On Neural Networks , vol.8 , pp. 75-83
    • Lee, C.1    Landgrebe, D.A.2
  • 20
    • 0033096854 scopus 로고    scopus 로고
    • Face recognition using the nearest feature line method
    • LI, S.Z. and LU, J.W., 1999, Face recognition using the nearest feature line method. IEEE Transactions on Neural Networks, 10, pp. 439-443.
    • (1999) IEEE Transactions On Neural Networks , vol.10 , pp. 439-443
    • Li, S.Z.1    Lu, J.W.2
  • 21
    • 37549009133 scopus 로고    scopus 로고
    • The application of artificial neural networks to the analysis of remotely sensed data
    • MAS, J.F. and FLORES, J.J., 2008, The application of artificial neural networks to the analysis of remotely sensed data. International Journal of Remote Sensing, 29, pp. 617-663.
    • (2008) International Journal of Remote Sensing , vol.29 , pp. 617-663
    • Mas, J.F.1    Flores, J.J.2
  • 23
    • 0036789610 scopus 로고    scopus 로고
    • Stratified estimation of forest area using satellite imagery, inventory data, and the k-nearest neighbors technique
    • MCROBERTS, R.E., NELSON, M.D. and WENDT, D.G., 2002, Stratified estimation of forest area using satellite imagery, inventory data, and the k-nearest neighbors technique. Remote Sensing of Environment, 82, pp. 457-468.
    • (2002) Remote Sensing of Environment , vol.82 , pp. 457-468
    • McRoberts, R.E.1    Nelson, M.D.2    Wendt, D.G.3
  • 24
    • 33748419615 scopus 로고    scopus 로고
    • A novel ensemble of classifiers for protein fold recognition
    • NANNI, L., 2006, A novel ensemble of classifiers for protein fold recognition. Neurocomputing, 6, pp. 2434-2437.
    • (2006) Neurocomputing , vol.6 , pp. 2434-2437
    • Nanni, L.1
  • 25
    • 70449409294 scopus 로고    scopus 로고
    • Extreme learning machine based land cover classification
    • PAL, M., 2009, Extreme learning machine based land cover classification. International Journal of Remote Sensing, 30, pp. 3835-3841.
    • (2009) International Journal of Remote Sensing , vol.30 , pp. 3835-3841
    • Pal, M.1
  • 26
    • 77951295936 scopus 로고    scopus 로고
    • Feature selection for classification of hyperspectral data by SVM
    • PAL, M. and FOODY, G.M., 2010, Feature selection for classification of hyperspectral data by SVM. IEEE Transactions on Geoscience and Remote Sensing, 48, pp. 2297-2306.
    • (2010) IEEE Transactions On Geoscience and Remote Sensing , vol.48 , pp. 2297-2306
    • Pal, M.1    Foody, G.M.2
  • 27
    • 0141569007 scopus 로고    scopus 로고
    • An assessment of the effectiveness of decision tree methods for land cover classification
    • PAL, M. and MATHER, P.M., 2003, An assessment of the effectiveness of decision tree methods for land cover classification. Remote Sensing of Environment, 86, pp. 554-565.
    • (2003) Remote Sensing of Environment , vol.86 , pp. 554-565
    • Pal, M.1    Mather, P.M.2
  • 28
    • 4444230479 scopus 로고    scopus 로고
    • Assessment of the effectiveness of support vector machines for hyper spectral data
    • PAL, M. and MATHER, P.M., 2004, Assessment of the effectiveness of support vector machines for hyper spectral data. Future Generation Computer Systems, 20, pp. 1215-1225.
    • (2004) Future Generation Computer Systems , vol.20 , pp. 1215-1225
    • Pal, M.1    Mather, P.M.2
  • 29
    • 0029415649 scopus 로고
    • A review and analysis of back propagation neural networks for classification of remotely sensed multi-spectral imagery
    • PAOLA, J.D. and SCHOWENGERDT, R.A., 1995, A review and analysis of back propagation neural networks for classification of remotely sensed multi-spectral imagery. International Journal of Remote Sensing, 16, pp. 3033-3058.
    • (1995) International Journal of Remote Sensing , vol.16 , pp. 3033-3058
    • Paola, J.D.1    Schowengerdt, R.A.2
  • 30
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • ROWEIS, S.T. and SAUL, L.K., 2000, Nonlinear dimensionality reduction by locally linear embedding. Science, 290, pp. 2323-2326.
    • (2000) Science , vol.290 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 33
    • 41249099827 scopus 로고    scopus 로고
    • Using k-NN and discriminant analyses to classify rain forest types in a Landsat TM image over northern Costa Rica
    • THESSLER, S., SESNIE, S., BENDAÑA, Z.S.R., RUOKOLAINEN, K., TOMPPO, E. and FINEGAN, B., 2008, Using k-NN and discriminant analyses to classify rain forest types in a Landsat TM image over northern Costa Rica. Remote Sensing of Environment, 112, pp. 2485-2494.
    • (2008) Remote Sensing of Environment , vol.112 , pp. 2485-2494
    • Thessler, S.1    Sesnie, S.2    Bendaña, Z.S.R.3    Ruokolainen, K.4    Tomppo, E.5    Finegan, B.6
  • 34
    • 84898980366 scopus 로고    scopus 로고
    • K-local hyperplane and convex distance nearest neighbor algorithms
    • T.G. Dietterich, S. Becker and Z. Ghahramani (Eds.), Cambridge, MA: MIT Press
    • VINCENT, P. and BENGIO, Y., 2002, K-local hyperplane and convex distance nearest neighbor algorithms. In Advances in Neural Information Processing Systems, T.G. Dietterich, S. Becker and Z. Ghahramani (Eds.), Vol. 14, pp. 985-992 (Cambridge, MA: MIT Press).
    • (2002) Advances In Neural Information Processing Systems , vol.14 , pp. 985-992
    • Vincent, P.1    Bengio, Y.2
  • 35
    • 0037945983 scopus 로고    scopus 로고
    • Open questions in neuro computing for earth observation
    • I. Kanellopoulos, G.G. Wilkinson, F. Roli and J. Austin (Eds.), New York: Springer-Verlag
    • WILKINSON, G.G., 1997, Open questions in neuro computing for earth observation. In Neuro- Computational in Remote Sensing Data Analysis, I. Kanellopoulos, G.G. Wilkinson, F. Roli and J. Austin (Eds.), pp. 3-13 (New York: Springer-Verlag).
    • (1997) Neuro- Computational In Remote Sensing Data Analysis , pp. 3-13
    • Wilkinson, G.G.1
  • 36
    • 56449083499 scopus 로고    scopus 로고
    • Adaptive local hyperplane classification
    • YANG, T. and KECMAN, V., 2008, Adaptive local hyperplane classification. Neurocomputing, 71, pp. 3001-3004.
    • (2008) Neurocomputing , vol.71 , pp. 3001-3004
    • Yang, T.1    Kecman, V.2
  • 37
    • 2142658770 scopus 로고    scopus 로고
    • Locally nearest neighbor classifiers for pattern classification
    • ZHENG, W., ZHAO, L. and ZOU, C., 2004, Locally nearest neighbor classifiers for pattern classification. Pattern Recognition, 37, pp. 1307-1309.
    • (2004) Pattern Recognition , vol.37 , pp. 1307-1309
    • Zheng, W.1    Zhao, L.2    Zou, C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.