메뉴 건너뛰기




Volumn , Issue , 2011, Pages

DOT: A matrix model for analyzing, optimizing and deploying software for big data analytics in distributed systems

Author keywords

Big data analytics; Distributed systems; System modeling; System scalability

Indexed keywords

COMPUTING POWER; DATA ANALYTICS; DATA SETS; DATA TRANSFORMATION; DISTRIBUTED SYSTEMS; FAULT-TOLERANT; GENERAL MODEL; INTERMEDIATE RESULTS; JOB EXECUTION; MATRIX MODEL; PARALLEL PROCESSING MODELS; PERFORMANCE REQUIREMENTS; PROCESSING OPERATIONS; SCALE-UP; SOFTWARE FRAMEWORKS; STORAGE RESOURCES; SYSTEM MODELING; SYSTEM SCALABILITY;

EID: 82155168671     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2038916.2038920     Document Type: Conference Paper
Times cited : (33)

References (29)
  • 1
    • 82155189409 scopus 로고    scopus 로고
    • http://hadoop.apache.org/.
  • 2
    • 82155194824 scopus 로고    scopus 로고
    • http: //en.wikipedia.org/wiki/Recurrencefirelation.
  • 3
    • 82155198429 scopus 로고    scopus 로고
    • http: //en.wikipedia.org/wiki/K-meansficlustering.
  • 4
    • 82155170040 scopus 로고    scopus 로고
    • http://www.tpc.org/tpch/.
  • 5
    • 82155197826 scopus 로고    scopus 로고
    • http://aws.amazon.com/ec2/.
  • 6
    • 82155188159 scopus 로고    scopus 로고
    • http://en.wikipedia.org/wiki/ParallelfiRandomfiAccessfiMachine.
  • 7
    • 79957809015 scopus 로고    scopus 로고
    • HadoopDB: An architectural hybrid of MapReduce and DBMS technologies for analytical workloads
    • Lyon, France
    • A. Abouzied, K. Bajda-Pawlikowski, D. J. Abadi, A. Silberschatz, and A. Rasin. HadoopDB: An Architectural Hybrid of MapReduce and DBMS Technologies for Analytical Workloads. In VLDB, Lyon, France, 2009.
    • (2009) VLDB
    • Abouzied, A.1    Bajda-Pawlikowski, K.2    Abadi, D.J.3    Silberschatz, A.4    Rasin, A.5
  • 8
    • 0039253775 scopus 로고    scopus 로고
    • Eddies: Continuously adaptive query processing
    • R. Avnur and J. M. Hellerstein. Eddies: Continuously Adaptive Query Processing. In SIGMOD, 2000.
    • (2000) SIGMOD
    • Avnur, R.1    Hellerstein, J.M.2
  • 11
    • 85030321143 scopus 로고    scopus 로고
    • MapReduce: Simplified data processing on large clusters
    • J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on Large Clusters. In OSDI, 2004.
    • (2004) OSDI
    • Dean, J.1    Ghemawat, S.2
  • 12
    • 80053521271 scopus 로고    scopus 로고
    • Hadoop++: Making a yellow elephant run like a cheetah (Without It even Noticing)
    • J. Dittrich, J.-A. Quiané-Ruiz, A. Jindal, Y. Kargin, V. Setty, and J. Schad. Hadoop++: Making a Yellow Elephant Run Like a Cheetah (Without It Even Noticing). PVLDB, 3(1):518-529, 2010.
    • (2010) PVLDB , vol.3 , Issue.1 , pp. 518-529
    • Dittrich, J.1    Quiané-Ruiz, J.-A.2    Jindal, A.3    Kargin, Y.4    Setty, V.5    Schad, J.6
  • 14
    • 63849186767 scopus 로고    scopus 로고
    • Distributed computing economics
    • J. Gray. Distributed Computing Economics. ACM Queue, 6(3):63-68, 2008.
    • (2008) ACM Queue , vol.6 , Issue.3 , pp. 63-68
    • Gray, J.1
  • 15
    • 79957794587 scopus 로고    scopus 로고
    • RCFile: A fast and space-efficient data placement structure in mapreduce-based warehouse systems
    • Y. He, R. Lee, Y. Huai, Z. Shao, N. Jain, X. Zhang, and Z. Xu. RCFile: A Fast and Space-efficient Data Placement Structure in MapReduce-based Warehouse Systems. In ICDE, 2011.
    • (2011) ICDE
    • He, Y.1    Lee, R.2    Huai, Y.3    Shao, Z.4    Jain, N.5    Zhang, X.6    Xu, Z.7
  • 17
    • 35448961922 scopus 로고    scopus 로고
    • Dryad: Distributed data-parallel programs from sequential building blocks
    • M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: Distributed Data-Parallel Programs from Sequential Building Blocks. In EuroSys, 2007.
    • (2007) EuroSys
    • Isard, M.1    Budiu, M.2    Yu, Y.3    Birrell, A.4    Fetterly, D.5
  • 19
    • 0020182801 scopus 로고
    • On optimizing an SQL-like nested query
    • W. Kim. On Optimizing an SQL-like Nested Query. ACM Trans. Database Syst., 7(3):443-469, 1982.
    • (1982) ACM Trans. Database Syst. , vol.7 , Issue.3 , pp. 443-469
    • Kim, W.1
  • 21
    • 85011076326 scopus 로고    scopus 로고
    • Request window: An approach to improve throughput of RDBMS-based data integration system by utilizing data sharing across concurrent distributed queries
    • R. Lee, M. Zhou, and H. Liao. Request Window: an Approach to Improve Throughput of RDBMS-based Data Integration System by Utilizing Data Sharing Across Concurrent Distributed Queries. In VLDB, 2007.
    • (2007) VLDB
    • Lee, R.1    Zhou, M.2    Liao, H.3
  • 23
    • 84862779280 scopus 로고    scopus 로고
    • Ciel: A universal execution engine for distributed data-flow computing
    • D. G. Murray and S. Hand. Ciel: a universal execution engine for distributed data-flow computing. In NSDI '11, 2011.
    • (2011) NSDI , vol.11
    • Murray, D.G.1    Hand, S.2
  • 27
    • 0025467711 scopus 로고
    • A bridging model for parallel computation
    • L. G. Valiant. A Bridging Model for Parallel Computation. Commun. ACM, 33(8):103-111, 1990.
    • (1990) Commun. ACM , vol.33 , Issue.8 , pp. 103-111
    • Valiant, L.G.1
  • 28
    • 72249089011 scopus 로고    scopus 로고
    • Distributed aggregation for data-parallel computing: Interfaces and implementations
    • Y. Yu, P. K. Gunda, and M. Isard. Distributed Aggregation for Data-Parallel Computing: Interfaces and Implementations. In SOSP, 2009.
    • (2009) SOSP
    • Yu, Y.1    Gunda, P.K.2    Isard, M.3
  • 29
    • 0000835028 scopus 로고
    • Latency metric: An experimental method for measuring and evaluating parallel program and architecture scalability
    • X. Zhang, Y. Yan, and K. He. Latency Metric: An Experimental Method for Measuring and Evaluating Parallel Program and Architecture Scalability. J. Parallel Distrib. Comput., 22(3):392-410, 1994.
    • (1994) J. Parallel Distrib. Comput. , vol.22 , Issue.3 , pp. 392-410
    • Zhang, X.1    Yan, Y.2    He, K.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.