메뉴 건너뛰기




Volumn 1, Issue , 2011, Pages 58-67

Exploring spatial-temporal trajectory model for location prediction

Author keywords

Location prediction; movement behavior mining; trajectory patterns

Indexed keywords

COMPACT STRUCTURES; DATA SETS; LOCATION PREDICTION; MINING ASSOCIATIONS; MOVEMENT BEHAVIOR; PREDICTION ALGORITHMS; PROBABILISTIC SUFFIX TREES; REAL DATA SETS; RESEARCH EFFORTS; SPATIAL INFORMATIONS; SPATIAL TEMPORALS; TEMPORAL INFORMATION; TEMPORAL PATTERN; TRAJECTORY DATA; TRAJECTORY MODELS; TRAJECTORY PATTERNS;

EID: 82055172407     PISSN: 15516245     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/MDM.2011.61     Document Type: Conference Paper
Times cited : (49)

References (23)
  • 3
    • 37249082461 scopus 로고    scopus 로고
    • Mining frequent trajectories of moving objects for location prediction
    • M. Morzy, "Mining frequent trajectories of moving objects for location prediction," in Proc. of MLDM, 2007, pp. 667-680.
    • Proc. of MLDM, 2007 , pp. 667-680
    • Morzy, M.1
  • 4
    • 33751054995 scopus 로고    scopus 로고
    • On Mining Moving Patterns for Object Tracking Sensor Networks
    • W.-C. Peng, Y.-Z. Ko, and W.-C. Lee, "On Mining Moving Patterns for Object Tracking Sensor Networks." in Proc. of MDM, 2006, pp. 41-44.
    • Proc. of MDM, 2006 , pp. 41-44
    • Peng, W.-C.1    Ko, Y.-Z.2    Lee, W.-C.3
  • 6
    • 78649497960 scopus 로고    scopus 로고
    • Mining trajectory profiles for discovering user communities
    • C.-W. C. C.-C. Hung and W.-C. Peng, "Mining trajectory profiles for discovering user communities," in Proc. of GIS-LBSN, 2009, pp. 1-8.
    • Proc. of GIS-LBSN, 2009 , pp. 1-8
    • Hung, C.-W.C.C.-C.1    Peng, W.-C.2
  • 7
    • 33750318706 scopus 로고    scopus 로고
    • Predestination: Inferring destinations from partial trajectories
    • J. Krumm and E. Horvitz, "Predestination: Inferring destinations from partial trajectories," in Proc. of UbiComp, 2006, pp. 243-260.
    • Proc. of UbiComp, 2006 , pp. 243-260
    • Krumm, J.1    Horvitz, E.2
  • 9
    • 62449151158 scopus 로고    scopus 로고
    • Mining temporal patterns with quantitative intervals
    • T. Guyet and R. Quiniou, "Mining temporal patterns with quantitative intervals," in Proc. of ICDM Workshops, 2008, pp. 218-227.
    • Proc. of ICDM Workshops, 2008 , pp. 218-227
    • Guyet, T.1    Quiniou, R.2
  • 10
    • 72749122910 scopus 로고    scopus 로고
    • K-STARs: Sequences of Spatio-Temporal Association Rules
    • F. Verhein, "k-STARs: Sequences of Spatio-Temporal Association Rules," in Proc. of ICDM Workshops, 2006, pp. 387-394.
    • Proc. of ICDM Workshops, 2006 , pp. 387-394
    • Verhein, F.1
  • 11
    • 33745572642 scopus 로고    scopus 로고
    • Mining spatio-temporal association rules, sources, sinks, stationary regions and thoroughfares in object mobility databases
    • F. Verhein and S. Chawla, "Mining spatio-temporal association rules, sources, sinks, stationary regions and thoroughfares in object mobility databases," in Proc. of DASFAA, 2006, pp. 187-201.
    • Proc. of DASFAA, 2006 , pp. 187-201
    • Verhein, F.1    Chawla, S.2
  • 12
    • 38049013788 scopus 로고    scopus 로고
    • Mining Trajectory Patterns Using Hidden Markov Models
    • H. Jeung, H. T. Shen, and X. Zhou, "Mining Trajectory Patterns Using Hidden Markov Models," in Proc. of DaWaK, 2007, pp. 470-480.
    • Proc. of DaWaK, 2007 , pp. 470-480
    • Jeung, H.1    Shen, H.T.2    Zhou, X.3
  • 13
    • 45149095381 scopus 로고    scopus 로고
    • Extracting mobility statistics from indexed spatio-temporal datasets
    • Y. Ishikawa, Y. Tsukamoto, and H. Kitagawa, "Extracting mobility statistics from indexed spatio-temporal datasets," in Proc. of STDBM, 2004, pp. 9-16.
    • Proc. of STDBM, 2004 , pp. 9-16
    • Ishikawa, Y.1    Tsukamoto, Y.2    Kitagawa, H.3
  • 14
    • 38049177418 scopus 로고    scopus 로고
    • Exploring Group Moving Pattern for an Energy-Constrained Object Tracking Sensor Network
    • H.-P. Tsai, D.-N. Yang, W.-C. Peng, and M.-S. Chen, "Exploring Group Moving Pattern for an Energy-Constrained Object Tracking Sensor Network," in Proc. of PAKDD, 2007, pp. 825-832.
    • Proc. of PAKDD, 2007 , pp. 825-832
    • Tsai, H.-P.1    Yang, D.-N.2    Peng, W.-C.3    Chen, M.-S.4
  • 15
    • 34547303670 scopus 로고    scopus 로고
    • Mining Frequent Spatio-Temporal Sequential Patterns
    • H. Cao, N. Mamoulis, and D. W. Cheung, "Mining Frequent Spatio-Temporal Sequential Patterns," in Proc. of ICDM, 2005, pp. 82-89.
    • Proc. of ICDM, 2005 , pp. 82-89
    • Cao, H.1    Mamoulis, N.2    Cheung, D.W.3
  • 17
    • 85140527321 scopus 로고    scopus 로고
    • An efficient approach to clustering in large multimedia databases with noise
    • A. Hinneburg and D. A. Keim, "An efficient approach to clustering in large multimedia databases with noise," in Proc. of KDD, 1998, pp. 58-65.
    • Proc. of KDD, 1998 , pp. 58-65
    • Hinneburg, A.1    Keim, D.A.2
  • 19
    • 19544365891 scopus 로고    scopus 로고
    • Agile: A General Approach to Detect Transitions in Evovling Data Streams
    • J. Yang and W.Wang, "Agile: A General Approach To Detect Transitions In Evovling Data Streams." in Proc. of ICDM, 2004, pp. 559-562.
    • Proc. of ICDM, 2004 , pp. 559-562
    • Yang, J.1    Wang, W.2
  • 20
    • 0032683017 scopus 로고    scopus 로고
    • Modeling protein families using probabilistic suffix trees
    • G. Bejerano and G. Yona, "Modeling protein families using probabilistic suffix trees," in Proc. of RECOMB, 1999, pp. 15-24.
    • Proc. of RECOMB, 1999 , pp. 15-24
    • Bejerano, G.1    Yona, G.2
  • 21
    • 0030282113 scopus 로고    scopus 로고
    • The power of amnesia: Learning probabilistic automata with variable memory length
    • D. Ron, Y. Singer, and N. Tishby, "The Power of Amnesia: Learning Probabilistic Automata with Variable Memory Length," Machine Learning, vol. 25, no. 2-3, pp. 117-149, 1996. (Pubitemid 126724391)
    • (1996) Machine Learning , vol.25 , Issue.2-3 , pp. 117-149
    • Ron, D.1    Singer, Y.2    Tishby, N.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.