메뉴 건너뛰기




Volumn 22, Issue 2, 2012, Pages 661-675

A semiparametric Bayesian approach to extreme value estimation

Author keywords

Bayesian; GPD; Higher quantiles; MCMC; Nonparametric estimation of curves; Threshold estimation

Indexed keywords


EID: 81955161158     PISSN: 09603174     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11222-011-9270-z     Document Type: Article
Times cited : (48)

References (34)
  • 2
    • 84993767803 scopus 로고    scopus 로고
    • Bayesian analysis of extreme events with threshold estimation
    • Behrens, C., Gamerman, D., Lopes, H. F.: Bayesian analysis of extreme events with threshold estimation. Stat. Model. 4, 227-244 (2004).
    • (2004) Stat. Model. , vol.4 , pp. 227-244
    • Behrens, C.1    Gamerman, D.2    Lopes, H.F.3
  • 3
    • 34547243356 scopus 로고    scopus 로고
    • A predictive approach to tail probability estimation
    • Bermudez, P., Turkman, M. A., Turkman, K. F.: A predictive approach to tail probability estimation. Extremes 4, 295-314 (2001).
    • (2001) Extremes , vol.4 , pp. 295-314
    • Bermudez, P.1    Turkman, M.A.2    Turkman, K.F.3
  • 4
    • 81955166482 scopus 로고    scopus 로고
    • A default Bayesian approach for regression on extremes
    • accepted
    • Cabras, S., Castellanos, M. A., Gamerman, D.: A default Bayesian approach for regression on extremes. Stat. Model. (2011, accepted).
    • (2011) Stat. Model.
    • Cabras, S.1    Castellanos, M.A.2    Gamerman, D.3
  • 5
    • 33749328172 scopus 로고    scopus 로고
    • A default Bayesian procedure for the generalized Pareto distribution
    • Castellanos, M. A., Cabras, S.: A default Bayesian procedure for the generalized Pareto distribution. J. Stat. Plan. Inference 137, 473-483 (2007).
    • (2007) J. Stat. Plan. Inference , vol.137 , pp. 473-483
    • Castellanos, M.A.1    Cabras, S.2
  • 7
    • 0039607949 scopus 로고    scopus 로고
    • A Bayesian analysis of extreme rainfall data
    • Coles, S. G., Tawn, J. A.: A Bayesian analysis of extreme rainfall data. Appl. Stat. 45, 463-478 (1996).
    • (1996) Appl. Stat. , vol.45 , pp. 463-478
    • Coles, S.G.1    Tawn, J.A.2
  • 8
    • 0018455488 scopus 로고
    • Note on the Poisson assumption in partial duration series model
    • Cunnane, C.: Note on the Poisson assumption in partial duration series model. Water Resour. Res. 15, 489-494 (1979).
    • (1979) Water Resour. Res. , vol.15 , pp. 489-494
    • Cunnane, C.1
  • 9
    • 0000161076 scopus 로고
    • Approximating priors by mixtures of natural conjugate priors
    • Dalal, S., Hall, W.: Approximating priors by mixtures of natural conjugate priors. J. R. Stat. Soc., Ser. B 45, 278-286 (1983).
    • (1983) J. R. Stat. Soc., Ser. B , vol.45 , pp. 278-286
    • Dalal, S.1    Hall, W.2
  • 10
    • 0000617024 scopus 로고
    • Models for exceedances over high thresholds (with discussion)
    • Davison, A. C., Smith, R. L.: Models for exceedances over high thresholds (with discussion). J. R. Stat. Soc., Ser. B 52, 393-342 (1990).
    • (1990) J. R. Stat. Soc., Ser. B , vol.52 , pp. 342-393
    • Davison, A.C.1    Smith, R.L.2
  • 11
    • 21844516533 scopus 로고
    • A Bayesian predictive approach to determining the number of components in a mixture distribution
    • Dey, D., Kuo, L., Sahu, S.: A Bayesian predictive approach to determining the number of components in a mixture distribution. Stat. Comput. 5, 297-305 (1995).
    • (1995) Stat. Comput. , vol.5 , pp. 297-305
    • Dey, D.1    Kuo, L.2    Sahu, S.3
  • 12
    • 0001244941 scopus 로고
    • Estimation of finite mixture distributions by Bayesian sampling
    • Diebolt, J., Robert, C.: Estimation of finite mixture distributions by Bayesian sampling. J. R. Stat. Soc., Ser. B 56, 363-375 (1994).
    • (1994) J. R. Stat. Soc., Ser. B , vol.56 , pp. 363-375
    • Diebolt, J.1    Robert, C.2
  • 13
    • 30444434892 scopus 로고    scopus 로고
    • Quasi-conjugate Bayes estimates for gpd parameters and application to heavy tails modelling
    • Diebolt, J., El-Aroui, M., Garrido, M., Girard, S.: Quasi-conjugate Bayes estimates for gpd parameters and application to heavy tails modelling. Extremes 1, 57-78 (2005).
    • (2005) Extremes , vol.1 , pp. 57-78
    • Diebolt, J.1    El-Aroui, M.2    Garrido, M.3    Girard, S.4
  • 16
    • 84958156266 scopus 로고
    • On the estimation of the frequency distributions of the largest and smallest number of a sample
    • Fisher, R. A., Tippett, L. H. C.: On the estimation of the frequency distributions of the largest and smallest number of a sample. Proc. Camb. Philos. Soc. 24, 180-190 (1928).
    • (1928) Proc. Camb. Philos. Soc. , vol.24 , pp. 180-190
    • Fisher, R.A.1    Tippett, L.H.C.2
  • 17
    • 36649016989 scopus 로고    scopus 로고
    • A dynamic mixture model for unsupervised tail estimation without threshold selection
    • Frigessi, A., Haug, O., Rue, H.: A dynamic mixture model for unsupervised tail estimation without threshold selection. Extremes 5, 219-235 (2002).
    • (2002) Extremes , vol.5 , pp. 219-235
    • Frigessi, A.1    Haug, O.2    Rue, H.3
  • 18
    • 1842815959 scopus 로고    scopus 로고
    • Markov chain Monte Carlo estimation of classical and dynamic switching and mixture models
    • Frühwirth-Schnatter, S.: Markov chain Monte Carlo estimation of classical and dynamic switching and mixture models. J. Am. Stat. Assoc. 96, 194-209 (2001).
    • (2001) J. Am. Stat. Assoc. , vol.96 , pp. 194-209
    • Frühwirth-Schnatter, S.1
  • 20
    • 54949111733 scopus 로고    scopus 로고
    • Bayesian treed Gaussian process models with an application to computer modeling
    • Gramacy, R., Lee, K.: Bayesian treed Gaussian process models with an application to computer modeling. J. Am. Stat. Assoc. 103, 1119-1130 (2008).
    • (2008) J. Am. Stat. Assoc. , vol.103 , pp. 1119-1130
    • Gramacy, R.1    Lee, K.2
  • 21
    • 84904261422 scopus 로고
    • The frequency distribution of the annual maximum (or minimum) values of meteorological events
    • Jenkinson, A. F.: The frequency distribution of the annual maximum (or minimum) values of meteorological events. Q. J. R. Meteorol. Soc. 81, 158-171 (1955).
    • (1955) Q. J. R. Meteorol. Soc. , vol.81 , pp. 158-171
    • Jenkinson, A.F.1
  • 22
    • 81955162661 scopus 로고    scopus 로고
    • Generalized Pareto models with time-varying tail behavior
    • Technical Report LES: UFRJ, in preparation
    • Lopes, H. F., Nascimento, F. F., Gamerman, D.: Generalized Pareto models with time-varying tail behavior. Technical Report LES: UFRJ, in preparation (2011).
    • (2011)
    • Lopes, H.F.1    Nascimento, F.F.2    Gamerman, D.3
  • 23
    • 0011167279 scopus 로고
    • La distribution de la plus grande de nvaleurs
    • von Mises, R.: La distribution de la plus grande de nvaleurs. Am. Math. Soc. 2, 271-294 (1954).
    • (1954) Am. Math. Soc. , vol.2 , pp. 271-294
    • von Mises, R.1
  • 24
    • 84860394869 scopus 로고    scopus 로고
    • Regression models for exceedance data via the full likelihood
    • to appear
    • Nascimento, F. F., Gamerman, D., Lopes, H. F.: Regression models for exceedance data via the full likelihood. Environ. Ecol. Stat. (2011, to appear).
    • (2011) Environ. Ecol. Stat.
    • Nascimento, F.F.1    Gamerman, D.2    Lopes, H.F.3
  • 25
    • 0001075431 scopus 로고
    • Statistical inference using extreme order statistics
    • Pickands, J.: Statistical inference using extreme order statistics. Ann. Stat. 3, 119-131 (1975).
    • (1975) Ann. Stat. , vol.3 , pp. 119-131
    • Pickands, J.1
  • 26
    • 18244378520 scopus 로고    scopus 로고
    • On Bayesian analysis of mixtures with an unknown number of components
    • Richardson, S., Green, P.: On Bayesian analysis of mixtures with an unknown number of components. J. R. Stat. Soc., Ser. B 59, 731-792 (1997).
    • (1997) J. R. Stat. Soc., Ser. B , vol.59 , pp. 731-792
    • Richardson, S.1    Green, P.2
  • 27
    • 70349290724 scopus 로고    scopus 로고
    • Examples of adaptive mcmc. Journal of Computation and Graphical
    • Roberts, G. O., Rosenthal, J. S.: Examples of adaptive mcmc. Journal of Computation and Graphical. Statistics 18, 349-367 (2009).
    • (2009) Statistics , vol.18 , pp. 349-367
    • Roberts, G.O.1    Rosenthal, J.S.2
  • 28
    • 21744460005 scopus 로고    scopus 로고
    • Practical Bayesian density estimation using mixtures of normals
    • Roeder, K., Wasserman, L.: Practical Bayesian density estimation using mixtures of normals. J. Am. Stat. Assoc. 92, 894-902 (1997).
    • (1997) J. Am. Stat. Assoc. , vol.92 , pp. 894-902
    • Roeder, K.1    Wasserman, L.2
  • 29
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz, G.: Estimating the dimension of a model. Ann. Stat. 6, 461-464 (1978).
    • (1978) Ann. Stat. , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 32
    • 37849187877 scopus 로고    scopus 로고
    • Accounting for threshold uncertainty in extreme value estimation
    • Tancredi, A., Anderson, C., O'Hagan, A.: Accounting for threshold uncertainty in extreme value estimation. Extremes 9, 87-106 (2006).
    • (2006) Extremes , vol.9 , pp. 87-106
    • Tancredi, A.1    Anderson, C.2    O'Hagan, A.3
  • 34


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.