메뉴 건너뛰기




Volumn 218, Issue 8, 2011, Pages 4501-4506

Positive almost periodic solution for a class of Lasota-Wazewska model with infinite delays

Author keywords

Cone; Exponential convergence; Infinite delays; Lasota Wazewska model; Positive almost periodic solution

Indexed keywords

ALMOST PERIODIC SOLUTIONS; CONTRACTION MAPPING PRINCIPLES; EXPONENTIAL CONVERGENCE; INFINITE DELAY; INFINITE DELAYS; LASOTA-WAZEWSKA MODEL; SUFFICIENT CONDITIONS;

EID: 81855198901     PISSN: 00963003     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.amc.2011.10.031     Document Type: Article
Times cited : (27)

References (13)
  • 1
    • 77958496561 scopus 로고    scopus 로고
    • Positive almost periodic solutions for a delay logarithmic population model
    • J.O. Alzabut, G.T. Stamov, and E. Sermutlu Positive almost periodic solutions for a delay logarithmic population model Math. Comput. Model. 53 2011 161 167
    • (2011) Math. Comput. Model. , vol.53 , pp. 161-167
    • Alzabut, J.O.1    Stamov, G.T.2    Sermutlu, E.3
  • 2
    • 77955773515 scopus 로고    scopus 로고
    • Almost periodic solution of an impulse differential equation model of plankton allelopathy
    • M.X. He, F.D. Chen, and Z. Li Almost periodic solution of an impulse differential equation model of plankton allelopathy Nonlinear Anal. 11 2010 2296 2301
    • (2010) Nonlinear Anal. , vol.11 , pp. 2296-2301
    • He, M.X.1    Chen, F.D.2    Li, Z.3
  • 3
    • 65849210626 scopus 로고    scopus 로고
    • Almost periodic solutions of a discrete almost periodic logistic equation
    • Z. Li, and F. Chen Almost periodic solutions of a discrete almost periodic logistic equation Math. Comput. Model. 50 2009 254 259
    • (2009) Math. Comput. Model. , vol.50 , pp. 254-259
    • Li, Z.1    Chen, F.2
  • 4
    • 77956058868 scopus 로고    scopus 로고
    • The existence of almost periodic solutions of a certain nonlinear system
    • 0-107
    • Y.H. Wang, and Y.H. Xia The existence of almost periodic solutions of a certain nonlinear system Commun. Nonlinear Sci. Numer. Simulat. 16 2011 106. 0 107
    • (2011) Commun. Nonlinear Sci. Numer. Simulat. , vol.16 , pp. 106
    • Wang, Y.H.1    Xia, Y.H.2
  • 5
    • 41949130121 scopus 로고    scopus 로고
    • Almost periodic solutions of neutral functional differential equations
    • S. Abbas, and D. Bahuguna Almost periodic solutions of neutral functional differential equations Comput. Math. Appl. 55 11 2008 2539 2601
    • (2008) Comput. Math. Appl. , vol.55 , Issue.11 , pp. 2539-2601
    • Abbas, S.1    Bahuguna, D.2
  • 6
    • 70449625942 scopus 로고    scopus 로고
    • Almost periodic solutions of neutral differential equations
    • X.X. Chen, and F.X. Lin Almost periodic solutions of neutral differential equations Nonlinear Anal. 11 2010 1182 1189
    • (2010) Nonlinear Anal. , vol.11 , pp. 1182-1189
    • Chen, X.X.1    Lin, F.X.2
  • 8
    • 0003233070 scopus 로고
    • Almost Periodic Differential Equations
    • Springer-Verlag Berlin
    • A.M. Fink Almost Periodic Differential Equations Lect. Notes Math. vol. 377 1974 Springer-Verlag Berlin
    • (1974) Lect. Notes Math. , vol.377
    • Fink, A.M.1
  • 9
    • 0001648851 scopus 로고    scopus 로고
    • Almost periodic solutions of Lasota-Wazewska-type delay differential equation
    • K. Gopalsamy, and S. Trofimchuk Almost periodic solutions of Lasota-Wazewska-type delay differential equation J. Math. Anal. Appl. 237 1999 106 127
    • (1999) J. Math. Anal. Appl. , vol.237 , pp. 106-127
    • Gopalsamy, K.1    Trofimchuk, S.2
  • 11
    • 79651470784 scopus 로고    scopus 로고
    • Positive almost periodic solution for a class of Lasota-Wazewska model with multiple timing-varing delays
    • Z.D. Huang, S.H. Gong, and L.J. Wang Positive almost periodic solution for a class of Lasota-Wazewska model with multiple timing-varing delays Comput. Math. Appl. 61 2011 755 760
    • (2011) Comput. Math. Appl. , vol.61 , pp. 755-760
    • Huang, Z.D.1    Gong, S.H.2    Wang, L.J.3
  • 13
    • 32344436081 scopus 로고    scopus 로고
    • Existence and global attractivity of unique positive periodic solution for a Lasota-Wazewska model
    • DOI 10.1016/j.na.2005.07.022, PII S0362546X05007169
    • G. Liu, A. Zhao, and J. Yan Existence and global at activity of unique positive periodoic solution for a Lasota-Wazewska model Nonlinear Anal. 64 2006 1737 1746 (Pubitemid 43220241)
    • (2006) Nonlinear Analysis, Theory, Methods and Applications , vol.64 , Issue.8 , pp. 1737-1746
    • Liu, G.1    Zhao, A.2    Yan, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.