메뉴 건너뛰기




Volumn 7064 LNCS, Issue PART 3, 2011, Pages 557-564

Intelligent video surveillance system using dynamic saliency map and boosted Gaussian mixture model

Author keywords

AdaBoost; Dynamic saliency map; Gaussian mixture model; Object tracking; Video surveillance system

Indexed keywords

APPEARANCE MODELS; CAMERA SYSTEMS; GAUSSIAN MIXTURE MODEL; IMAGE TRANSLATION; INPUT FEATURES; INTELLIGENT VIDEO; INTELLIGENT VIDEO SURVEILLANCE; LIGHT CONDITIONS; MOVING OBJECTS; OBJECT DETECTION; OBJECT TRACKING; SALIENCY MAP; TRAFFIC SURVEILLANCE; VIDEO SURVEILLANCE SYSTEMS;

EID: 81855198085     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-24965-5_63     Document Type: Conference Paper
Times cited : (4)

References (16)
  • 7
    • 79951594302 scopus 로고    scopus 로고
    • A Traffic Surveillance System Using Dynamic Saliency Map and SVM Boosting
    • Woo, J.-W., Lee, W., Lee, M.: A Traffic Surveillance System Using Dynamic Saliency Map and SVM Boosting. Int. J. of Control, Automation, and Systems 8(5), 948-956 (2010)
    • (2010) Int. J. of Control, Automation, and Systems , vol.8 , Issue.5 , pp. 948-956
    • Woo, J.-W.1    Lee, W.2    Lee, M.3
  • 8
    • 78650211629 scopus 로고    scopus 로고
    • A Multi-class Object Classifier Using Boosted Gaussian Mixture Model
    • Wong, K.W., Mendis, B.S.U., Bouzerdoum, A. (eds.) ICONIP 2010, Part I. Springer, Heidelberg
    • Lee, W., Lee, M.: A Multi-class Object Classifier Using Boosted Gaussian Mixture Model. In: Wong, K.W., Mendis, B.S.U., Bouzerdoum, A. (eds.) ICONIP 2010, Part I. LNCS, vol. 6443, pp. 430-437. Springer, Heidelberg (2010)
    • (2010) LNCS , vol.6443 , pp. 430-437
    • Lee, W.1    Lee, M.2
  • 9
    • 0033316361 scopus 로고    scopus 로고
    • Hierarchical Models of Object Recognition in Cortex
    • Riesenhuber, M., Poggio, T.: Hierarchical Models of Object Recognition in Cortex. J. Neurosci. 2, 1019-1025 (1999)
    • (1999) J. Neurosci. , vol.2 , pp. 1019-1025
    • Riesenhuber, M.1    Poggio, T.2
  • 10
    • 0037317897 scopus 로고    scopus 로고
    • Efficient Greedy Learning of Gaussian Mixture Models
    • Verbeek, J., Vlassis, N., Krose, B.: Efficient Greedy Learning of Gaussian Mixture Models. Neural Computation 15, 469-485 (2003)
    • (2003) Neural Computation , vol.15 , pp. 469-485
    • Verbeek, J.1    Vlassis, N.2    Krose, B.3
  • 13
    • 81855213478 scopus 로고    scopus 로고
    • Center for Biological & Computational Learning
    • Center for Biological & Computational Learning. MIT, http://cbcl.mit.edu
  • 14
    • 81855162140 scopus 로고    scopus 로고
    • Computational Vision Lab.
    • Computational Vision Lab., Caltech, http://www.vision.caltech.edu
  • 15
    • 76249133198 scopus 로고    scopus 로고
    • Obstacle Categorization Based on Hybridizing Global and Local Features
    • Leung, C.S., Lee, M., Chan, J.H. (eds.) ICONIP 2009. Springer, Heidelberg
    • Woo, J.-W., Lim, Y.-C., Lee, M.: Obstacle Categorization Based on Hybridizing Global and Local Features. In: Leung, C.S., Lee, M., Chan, J.H. (eds.) ICONIP 2009. LNCS, vol. 5864, pp. 1-10. Springer, Heidelberg (2009)
    • (2009) LNCS , vol.5864 , pp. 1-10
    • Woo, J.-W.1    Lim, Y.-C.2    Lee, M.3
  • 16
    • 47649110844 scopus 로고    scopus 로고
    • Evaluating multiple object tracking performance: The CLEAR MOT metrics
    • Bernardin, K., Stiefelhagen, R.: Evaluating multiple object tracking performance: the CLEAR MOT metrics. Journal on Image and Video Processing 2008, 1-10 (2008)
    • (2008) Journal on Image and Video Processing , vol.2008 , pp. 1-10
    • Bernardin, K.1    Stiefelhagen, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.