메뉴 건너뛰기




Volumn 39, Issue 1, 2012, Pages 1474-1483

Clinical charge profiles prediction for patients diagnosed with chronic diseases using Multi-level Support Vector Machine

Author keywords

Chronic disease and parallel algorithm; Classification problem; Multi level clustering algorithm; Support Vector Machine

Indexed keywords

CHARGE PROFILES; CHRONIC DISEASE; CLASSIFICATION PERFORMANCE; CLINICAL KNOWLEDGE; COMPLEX DATASETS; CROSS VALIDATION; DATA DISTRIBUTION; DATA MINING TASKS; DATA SETS; DECISION-FUSION ALGORITHMS; HEALTH CARE COSTS; HEALTHCARE SERVICES; LARGE DATASETS; LENGTH OF STAY; LOCAL DATA; MATHEMATICAL FOUNDATIONS; MULTI-LEVEL; NUMBER OF SAMPLES; PERFORMANCE EVALUATION; POLICY MAKERS; RUNNING TIME ANALYSIS; SUPPORT VECTOR; SVM CLASSIFICATION; TRAINING PROCESS; TRAINING TIME;

EID: 81855164880     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2011.08.036     Document Type: Article
Times cited : (14)

References (21)
  • 1
    • 0033570831 scopus 로고    scopus 로고
    • Combined 5 × 2 cv F test for comparing supervised classification learning algorithms
    • E. Alpaydin Combined 5 × 2 cv F test for comparing supervised classification learning algorithms Neural Computation 11 8 1999 1885 1892
    • (1999) Neural Computation , vol.11 , Issue.8 , pp. 1885-1892
    • Alpaydin, E.1
  • 3
    • 0033931867 scopus 로고    scopus 로고
    • Assessing the accuracy of prediction algorithms for classification: An overview
    • P. Baldi, S. Brunak, Y. Chauvin, C. Andersen, and H. Nielsen Assessing the accuracy of prediction algorithms for classification: An overview Bioinformatics 16 5 2000 412 424
    • (2000) Bioinformatics , vol.16 , Issue.5 , pp. 412-424
    • Baldi, P.1    Brunak, S.2    Chauvin, Y.3    Andersen, C.4    Nielsen, H.5
  • 10
    • 36049030250 scopus 로고    scopus 로고
    • A new intrusion detection system using support vector machines and hierarchical clustering
    • L. Khan, M. Awad, and B. Thuraisingham A new intrusion detection system using support vector machines and hierarchical clustering International Journal on Very Large Data Bases 16 4 2007 507 521
    • (2007) International Journal on Very Large Data Bases , vol.16 , Issue.4 , pp. 507-521
    • Khan, L.1    Awad, M.2    Thuraisingham, B.3
  • 15
    • 0003120218 scopus 로고    scopus 로고
    • Fast Training of support vector machines using sequential minimal optimization
    • Platt, J. (1999). Fast Training of support vector machines using sequential minimal optimization. Kernel Methods: Support Vector Learning (pp. 185-208).
    • (1999) Kernel Methods: Support Vector Learning , pp. 185-208
    • Platt, J.1
  • 17
  • 20
    • 26644466306 scopus 로고    scopus 로고
    • Improved K-means clustering algorithm for exploring local protein sequence motifs representing common structural property
    • W. Zhong, G. Altun, R. Harrison, P.C. Tai, and Y. Pan Improved K-means clustering algorithm for exploring local protein sequence motifs representing common structural property IEEE Transactions on NanoBioscience 4 3 2005 255 265
    • (2005) IEEE Transactions on NanoBioscience , vol.4 , Issue.3 , pp. 255-265
    • Zhong, W.1    Altun, G.2    Harrison, R.3    Tai, P.C.4    Pan, Y.5
  • 21
    • 33750453728 scopus 로고    scopus 로고
    • Clustering support vector machines for protein local structure prediction
    • W. Zhong, J. He, R. Harrison, P.C. Tai, and Y. Pan Clustering support vector machines for protein local structure prediction Expert Systems with Applications 32 2 2007 518 526
    • (2007) Expert Systems with Applications , vol.32 , Issue.2 , pp. 518-526
    • Zhong, W.1    He, J.2    Harrison, R.3    Tai, P.C.4    Pan, Y.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.