-
1
-
-
84976779126
-
Automatic Proofs of Theorems in Analysis Using Nonstandard Analysis
-
July
-
A.M. Ballantyne and W.W. Bledsoe. Automatic Proofs of Theorems in Analysis Using Nonstandard Analysis. J. of the Association of Computing Machinery, Vol. 24, No. 3, July 1977, 353-374.
-
(1977)
J. of the Association of Computing Machinery
, vol.24
, Issue.3
, pp. 353-374
-
-
Ballantyne, A.M.1
Bledsoe, W.W.2
-
2
-
-
84957078852
-
Infmal: Prototype of an Interactive Theorem Prover based on Infinitesimal Analysis
-
Pontifica Universidad Catolica de Chile, Santiago, Chile
-
T. Bedrax. Infmal: Prototype of an Interactive Theorem Prover based on Infinitesimal Analysis. Liciendo en Mathematica con Mencion en Computation Thesis. Pontifica Universidad Catolica de Chile, Santiago, Chile, 1993.
-
(1993)
Liciendo en Mathematica con Mencion en Computation Thesis
-
-
Bedrax, T.1
-
3
-
-
61149720777
-
The Analyst: A Discourse Addressed to an Infidel Mathematician
-
London. Allen and Unwin
-
G. Berkeley. The Analyst: A Discourse Addressed to an Infidel Mathematician. The World of Mathematics, Vol. 1, London. Allen and Unwin, 1956, 288-293.
-
(1956)
The World of Mathematics
, vol.1
, pp. 288-293
-
-
Berkeley, G.1
-
4
-
-
0030384971
-
Automated Generation of Readable Proofs with Geometric Invariants, I
-
S.C. Chou, X.S. Gao, and J.Z. Zhang. Automated Generation of Readable Proofs with Geometric Invariants, I. Multiple and Shortest Proof Generation. J. Automated Reasoning 17 (1996), 325-347.
-
(1996)
Multiple and Shortest Proof Generation. J. Automated Reasoning
, vol.17
, pp. 325-347
-
-
Chou, S.C.1
Gao, X.S.2
Zhang, J.Z.3
-
5
-
-
0030384707
-
Automated Generation of Readable Proofs with Geometric Invariants, II
-
S.C. Chou, X.S. Gao, and J.Z. Zhang. Automated Generation of Readable Proofs with Geometric Invariants, II. Theorem Proving with Full-angles. J. Automated Reasoning 17 (1996), 349-370.
-
(1996)
Theorem Proving with Full-angles. J. Automated Reasoning
, vol.17
, pp. 349-370
-
-
Chou, S.C.1
Gao, X.S.2
Zhang, J.Z.3
-
7
-
-
85034829550
-
Geometry Theorem Proving using Hilbert's Nullstellensatz
-
Waterloo
-
D. Kapur. Geometry Theorem Proving using Hilbert's Nullstellensatz. Proceedings of SYMSAC'86, Waterloo, 1986, 202-208.
-
(1986)
Proceedings of SYMSAC'86
, pp. 202-208
-
-
Kapur, D.1
-
8
-
-
0004096310
-
-
Prindle, Weber & Schmidt, 20 Newbury Street, Boston, Massachusetts
-
H.J. Keisler. Foundations of Infinitesimal Calculus. Prindle, Weber & Schmidt, 20 Newbury Street, Boston, Massachusetts, 1976.
-
(1976)
Foundations of Infinitesimal Calculus
-
-
Keisler, H.J.1
-
9
-
-
0003580846
-
-
Third edition, 1726. Translation by A. Motte (1729). Revised by F. Cajory 1934. University of California Press
-
I. Newton. The Mathematical Principles of Natural Philosophy. Third edition, 1726. Translation by A. Motte (1729). Revised by F. Cajory 1934. University of California Press.
-
The Mathematical Principles of Natural Philosophy
-
-
Newton, I.1
-
10
-
-
0039720656
-
Diagrams for Solving Physical Problems
-
AAAI Press/MIT Press,,. (Eds. Janice Glasgow, N. Hari Narayana, and B. Chandrasekaram)
-
S Novak Jr. Diagrams for Solving Physical Problems. Diagrammatic Reasoning: Cognitive and Computational Perspectives, AAAI Press/MIT Press, 753-774, 1995. (Eds. Janice Glasgow, N. Hari Narayana, and B. Chandrasekaram).
-
(1995)
Diagrammatic Reasoning: Cognitive and Computational Perspectives
, pp. 753-774
-
-
Novak, S.1
-
12
-
-
0004232766
-
-
North-Holland Publishing Company,. 1966, first edition
-
A. Robinson. Non-Standard Analysis. North-Holland Publishing Company, 1980. 1966, first edition.
-
(1980)
Non-Standard Analysis
-
-
Robinson, A.1
-
13
-
-
21844491092
-
Free-Variable Axiomatic Foundations of Infinitesimal Analysis: A Fragment with Finitary Consistency Proof
-
March
-
R. Chuaqui and P. Suppes. Free-Variable Axiomatic Foundations of Infinitesimal Analysis: A Fragment with Finitary Consistency Proof. J. Symbolic Logic, Vol. 60, No. 1, March 1995.
-
(1995)
J. Symbolic Logic
, vol.60
, Issue.1
-
-
Chuaqui, R.1
Suppes, P.2
-
17
-
-
2342612062
-
Mechanical Theorem Proving of Differential Geometries and Some of its Applications in Mechanics
-
W.-T. Wu. Mechanical Theorem Proving of Differential Geometries and Some of its Applications in Mechanics. J. Automated Reasoning 7 (1991), 171-191.
-
(1991)
J. Automated Reasoning
, vol.7
, pp. 171-191
-
-
Wu, W.-T.1
|