-
1
-
-
0001356905
-
Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits
-
(no. fasc. 1)
-
Arnold, V. I.: Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits. Ann. Inst. Fourier (Grenoble) 16(no. fasc. 1), 319-361 (1966).
-
(1966)
Ann. Inst. Fourier (Grenoble)
, vol.16
, pp. 319-361
-
-
Arnold, V.I.1
-
3
-
-
12044254491
-
An integrable shallow water equation with peaked solitons
-
Camassa R., Holm D. D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71(11), 1661-1664 (1993).
-
(1993)
Phys. Rev. Lett.
, vol.71
, Issue.11
, pp. 1661-1664
-
-
Camassa, R.1
Holm, D.D.2
-
4
-
-
0000985293
-
Wave breaking for nonlinear nonlocal shallow water equations
-
Constantin A., Escher J.: Wave breaking for nonlinear nonlocal shallow water equations. Acta Math. 181(2), 229-243 (1998).
-
(1998)
Acta Math.
, vol.181
, Issue.2
, pp. 229-243
-
-
Constantin, A.1
Escher, J.2
-
5
-
-
0032374820
-
Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation
-
Constantin A., Escher J.: Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation. Comm. Pure Appl. Math. 51(5), 475-504 (1998).
-
(1998)
Comm. Pure Appl. Math.
, vol.51
, Issue.5
, pp. 475-504
-
-
Constantin, A.1
Escher, J.2
-
6
-
-
33846053142
-
Inverse scattering transform for the Camassa-Holm equation
-
Constantin A., Gerdjikov V. S., Ivanov R. I.: Inverse scattering transform for the Camassa-Holm equation. Inverse Problems 22(6), 2197-2207 (2006).
-
(2006)
Inverse Problems
, vol.22
, Issue.6
, pp. 2197-2207
-
-
Constantin, A.1
Gerdjikov, V.S.2
Ivanov, R.I.3
-
7
-
-
0042279206
-
On the geometric approach to the motion of inertial mechanical systems
-
Constantin A., Kolev B.: On the geometric approach to the motion of inertial mechanical systems. J. Phys. A 35(32), R51-R79 (2002).
-
(2002)
J. Phys. A
, vol.35
, Issue.32
-
-
Constantin, A.1
Kolev, B.2
-
8
-
-
0242350978
-
Geodesic flow on the diffeomorphism group of the circle
-
Constantin A., Kolev B.: Geodesic flow on the diffeomorphism group of the circle. Comment. Math. Helv. 78(4), 787-804 (2003).
-
(2003)
Comment. Math. Helv.
, vol.78
, Issue.4
, pp. 787-804
-
-
Constantin, A.1
Kolev, B.2
-
9
-
-
60349102715
-
The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations
-
Constantin A., Lannes D.: The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations. Arch. Ration. Mech. Anal. 192(1), 165-186 (2009).
-
(2009)
Arch. Ration. Mech. Anal.
, vol.192
, Issue.1
, pp. 165-186
-
-
Constantin, A.1
Lannes, D.2
-
10
-
-
0036441096
-
A new integrable equation with peakon solutions
-
Degasperis A., Holm D. D., Hone A. N. I.: A new integrable equation with peakon solutions. Teoret. Mat. Fiz. 133(2), 170-183 (2002).
-
(2002)
Teoret. Mat. Fiz.
, vol.133
, Issue.2
, pp. 170-183
-
-
Degasperis, A.1
Holm, D.D.2
Hone, A.N.I.3
-
11
-
-
21744434816
-
-
Rome, World Sci. Publ., River Edge, NJ
-
Degasperis, A., Procesi, M.: Asymptotic integrability. Symmetry and Perturbation Theory (Rome, 1998), pp. 23-37. World Sci. Publ., River Edge, NJ (1999).
-
(1998)
Asymptotic Integrability Symmetry and Perturbation Theory
, pp. 23-37
-
-
Degasperis, A.1
Procesi, M.2
-
12
-
-
84870408969
-
Existence de géodésiques d'un groupe de difféomorphismes muni d'une métrique de Sobolev
-
Djebali S., Hermas N.: Existence de géodésiques d'un groupe de difféomorphismes muni d'une métrique de Sobolev. Afr. Diaspora J. Math. 9, 50-63 (2010).
-
(2010)
Afr. Diaspora J. Math.
, vol.9
, pp. 50-63
-
-
Djebali, S.1
Hermas, N.2
-
13
-
-
0001052255
-
Groups of diffeomorphisms and the motion of an incompressible fluid
-
Ebin D. G., Marsden J.: Groups of diffeomorphisms and the motion of an incompressible fluid. Ann. Math. 92(2), 102-163 (1970).
-
(1970)
Ann. Math.
, vol.92
, Issue.2
, pp. 102-163
-
-
Ebin, D.G.1
Marsden, J.2
-
14
-
-
34548219119
-
Wave breaking and shock waves for a periodic shallow water equation
-
Escher J.: Wave breaking and shock waves for a periodic shallow water equation. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 365(1858), 2281-2289 (2007).
-
(2007)
Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.
, vol.365
, Issue.1858
, pp. 2281-2289
-
-
Escher, J.1
-
16
-
-
34247509833
-
Shock waves and blow-up phenomena for the periodic Degasperis-Procesi equation
-
Escher J., Liu Y., Yin Z.: Shock waves and blow-up phenomena for the periodic Degasperis-Procesi equation. Indiana Univ. Math. J. 56(1), 87-117 (2007).
-
(2007)
Indiana Univ. Math. J.
, vol.56
, Issue.1
, pp. 87-117
-
-
Escher, J.1
Liu, Y.2
Yin, Z.3
-
17
-
-
77955234722
-
The periodic b-equation and Euler equations on the circle
-
Escher, J., Seiler, J.: The periodic b-equation and Euler equations on the circle. J. Math. Phys. 51: 053101. 1-053101. 6 (2010).
-
(2010)
J. Math. Phys
, vol.51
-
-
Escher, J.1
Seiler, J.2
-
18
-
-
55249108067
-
Well-posedness, blow-up phenomena, and global solutions for the b-equation
-
Escher J., Yin Z.: Well-posedness, blow-up phenomena, and global solutions for the b-equation. J. Reine Angew. Math. 624, 51-80 (2008).
-
(2008)
J. Reine Angew. Math.
, vol.624
, pp. 51-80
-
-
Escher, J.1
Yin, Z.2
-
20
-
-
84966236065
-
The inverse function theorem of Nash and Moser
-
Hamilton R. S.: The inverse function theorem of Nash and Moser. Bull. Amer. Math. Soc. (N. S.) 7(1), 65-222 (1982).
-
(1982)
Bull. Amer. Math. Soc. (N.S.)
, vol.7
, Issue.1
, pp. 65-222
-
-
Hamilton, R.S.1
-
21
-
-
0037275227
-
Prolongation algebras and Hamiltonian operators for peakon equations
-
Hone A. N. W., Wang J. P.: Prolongation algebras and Hamiltonian operators for peakon equations. Inverse Problems 19(1), 129-145 (2003).
-
(2003)
Inverse Problems
, vol.19
, Issue.1
, pp. 129-145
-
-
Hone, A.N.W.1
Wang, J.P.2
-
22
-
-
26444571289
-
On the integrability of a class of nonlinear dispersive waves equations
-
Ivanov R. I.: On the integrability of a class of nonlinear dispersive waves equations. J. Nonlinear Math. Phys. 12(4), 462-468 (2005).
-
(2005)
J. Nonlinear Math. Phys.
, vol.12
, Issue.4
, pp. 462-468
-
-
Ivanov, R.I.1
-
24
-
-
0037171407
-
Camassa-Holm, Korteweg-de Vries and related models for water waves
-
Johnson R. S.: Camassa-Holm, Korteweg-de Vries and related models for water waves. J. Fluid Mech. 455, 63-82 (2002).
-
(2002)
J. Fluid Mech.
, vol.455
, pp. 63-82
-
-
Johnson, R.S.1
-
25
-
-
0038455796
-
The classical problem of water waves: a reservoir of integrable and nearly-integrable equations
-
Johnson R. S.: The classical problem of water waves: a reservoir of integrable and nearly-integrable equations. J. Nonlinear Math. Phys. 10(1), 72-92 (2003).
-
(2003)
J. Nonlinear Math. Phys.
, vol.10
, Issue.1
, pp. 72-92
-
-
Johnson, R.S.1
-
26
-
-
70249137567
-
Some geometric investigations on the Degasperis-Procesi shallow water equation
-
Kolev B.: Some geometric investigations on the Degasperis-Procesi shallow water equation. Wave Motion 46, 412-419 (2009).
-
(2009)
Wave Motion
, vol.46
, pp. 412-419
-
-
Kolev, B.1
-
27
-
-
0033483085
-
The Camassa-Holm equation as a geodesic flow on the diffeomorphism group
-
Kouranbaeva S.: The Camassa-Holm equation as a geodesic flow on the diffeomorphism group. J. Math. Phys. 40(2), 857-868 (1999).
-
(1999)
J. Math. Phys.
, vol.40
, Issue.2
, pp. 857-868
-
-
Kouranbaeva, S.1
-
28
-
-
0003263328
-
Fundamentals of differential geometry
-
Springer, New York
-
Lang, S.: Fundamentals of differential geometry. Graduate Texts in Mathematics, vol. 191. Springer, New York (1999).
-
(1999)
Graduate Texts In Mathematics
, vol.191
-
-
Lang, S.1
-
30
-
-
85045532817
-
Some geometric evolution equations arising as geodesic equations on groups of diffeomorphisms including the Hamiltonian approach
-
Birkhäuser Boston, Boston, MA
-
Michor, P. W.: Some geometric evolution equations arising as geodesic equations on groups of diffeomorphisms including the Hamiltonian approach. Phase space analysis of partial differential equations, Progr. Nonlinear Differential Equations Appl., vol. 69, pp. 133-215. Birkhäuser Boston, Boston, MA (2006).
-
(2006)
Phase Space Analysis of Partial Differential Equations, Progr. Nonlinear Differential Equations Appl
, vol.69
, pp. 133-215
-
-
Michor, P.W.1
-
31
-
-
0037036176
-
Perturbative symmetry approach
-
Mikhailov A. V., Novikov V. S.: Perturbative symmetry approach. J. Phys. A 35(22), 4775-4790 (2002).
-
(2002)
J. Phys. A
, vol.35
, Issue.22
, pp. 4775-4790
-
-
Mikhailov, A.V.1
Novikov, V.S.2
-
32
-
-
0012037921
-
-
II, (Les Houches, 1983), North-Holland, Amsterdam
-
Milnor, J.: Remarks on infinite-dimensional Lie groups. Relativity, Groups and Topology, II (Les Houches, 1983), pp. 1007-1057. North-Holland, Amsterdam (1984).
-
(1984)
Remarks On Infinite-dimensional Lie Groups. Relativity, Groups and Topology
, pp. 1007-1057
-
-
Milnor, J.1
-
33
-
-
34548239768
-
Une méthode de "cinématique fonctionnelle" en hydrodynamique
-
Moreau J. J.: Une méthode de "cinématique fonctionnelle" en hydrodynamique. C. R. Acad. Sci. Paris 249, 2156-2158 (1959).
-
(1959)
C. R. Acad. Sci. Paris
, vol.249
, pp. 2156-2158
-
-
Moreau, J.J.1
-
34
-
-
0035479874
-
On the Cauchy problem for the Camassa-Holm equation
-
Rodríguez-Blanco G.: On the Cauchy problem for the Camassa-Holm equation. Nonlinear Anal. Ser. A: Theory Methods 46(3), 309-327 (2001).
-
(2001)
Nonlinear Anal. Ser. A: Theory Methods
, vol.46
, Issue.3
, pp. 309-327
-
-
Rodríguez-Blanco, G.1
|