메뉴 건너뛰기




Volumn 3, Issue 1, 2005, Pages 1-35

Approximate value iteration in the reinforcement learning context. application to electrical power system control.

Author keywords

Approximate value iteration; Electrical power oscillations damping; Power system control; reinforcement learning; TCSC control

Indexed keywords

APPROXIMATION ALGORITHMS; DISCRETE TIME CONTROL SYSTEMS; ELECTRIC POWER SYSTEMS; INTELLIGENT AGENTS; ITERATIVE METHODS; LEARNING ALGORITHMS; OPTIMAL CONTROL SYSTEMS; POWER CONTROL; REINFORCEMENT LEARNING;

EID: 81355166317     PISSN: 21945756     EISSN: 1553779X     Source Type: Journal    
DOI: 10.2202/1553-779X.1066     Document Type: Review
Times cited : (41)

References (41)
  • 2
    • 84968468700 scopus 로고
    • Polynomial approximation-A new computational technique in dynamic programming: Allocation processes
    • R. Bellman, R. Kalaba, and B. Kotkin. Polynomial approximation-A new computational technique in dynamic programming: Allocation processes. Mathematical Computation, 17:155-161, 1973.
    • (1973) Mathematical Computation , vol.17 , pp. 155-161
    • Bellman, R.1    Kalaba, R.2    Kotkin, B.3
  • 6
    • 85059428466 scopus 로고    scopus 로고
    • Selecting concise sets of samples for a reinforcement learning agent
    • D. Ernst. Selecting concise sets of samples for a reinforcement learning agent. Submitted, 2005.
    • (2005) Submitted
    • Ernst, D.1
  • 7
    • 9444250519 scopus 로고    scopus 로고
    • Iteratively extending time horizon reinforcement learning
    • N. Lavra L. Gamberger, and L. Todorovski, editors Dubrovnik, Croatia September Springer-Verlag Heidelberg
    • D. Ernst, P. Geurts, and L. Wehenkel. Iteratively extending time horizon reinforcement learning. In N. Lavra, L. Gamberger, and L. Todorovski, editors, Proceedings of the 14th European Conference on Machine Learning, pages 96-107, Dubrovnik, Croatia, September 2003. Springer-Verlag Heidelberg.
    • (2003) Proceedings of the 14th European Conference on Machine Learning , pp. 96-107
    • Ernst, D.1    Geurts, P.2    Wehenkel, L.3
  • 9
    • 1442265466 scopus 로고    scopus 로고
    • Power system stability control: Reinforcement learning framework
    • February
    • D. Ernst, M. Glavic, and L. Wehenkel. Power system stability control: reinforcement learning framework. IEEE Transactions on Power Systems, 19:427-435, February 2004.
    • (2004) IEEE Transactions on Power Systems , vol.19 , pp. 427-435
    • Ernst, D.1    Glavic, M.2    Wehenkel, L.3
  • 14
    • 13844311438 scopus 로고    scopus 로고
    • Combining a stability and a performance oriented control in power systems
    • M. Glavic, D. Ernst, and L. Wehenkel. Combining a stability and a performance oriented control in power systems. IEEE Transactions on Power Systems, 20(1):525-525, 2005.
    • (2005) IEEE Transactions on Power Systems , vol.20 , Issue.1 , pp. 525
    • Glavic, M.1    Ernst, D.2    Wehenkel, L.3
  • 15
    • 0003989207 scopus 로고    scopus 로고
    • Approximate solutions to markov decision processes phd thesis
    • June
    • G.J. Gordon. Approximate Solutions to Markov Decision Processes. PhD thesis, Carnegie Mellon University, June 1999.
    • (1999) Carnegie Mellon University
    • Gordon, G.J.1
  • 22
    • 0033224869 scopus 로고    scopus 로고
    • Learning coordinated fuzzy logic control of dynamic quadrature boosters in multimachine power systems. IEE Part C-Generation
    • B. H. Li and Q. H. Wu. Learning coordinated fuzzy logic control of dynamic quadrature boosters in multimachine power systems. IEE Part C-Generation, Transmission, and Distribution, 146(6):577-585, 1999.
    • (1999) Transmission, and Distribution , vol.146 , Issue.6 , pp. 577-585
    • Li, B.H.1    Wu, Q.H.2
  • 24
    • 0027684215 scopus 로고
    • Prioritized sweeping: Reinforcement learning with less data and less real time
    • A.W. Moore and C.G. Atkeson. Prioritized sweeping: reinforcement learning with less data and less real time. Machine Learning, 13:103-130, 1993.
    • (1993) Machine Learning , vol.13 , pp. 103-130
    • Moore, A.W.1    Atkeson, C.G.2
  • 25
    • 0036804005 scopus 로고    scopus 로고
    • Kernel-based reinforcement learning in average-cost problems
    • D. Ormoneit and P. Glynn. Kernel-based reinforcement learning in average-cost problems. IEEE Transactions on Automatic Control, 47 (10):1624-1636, 2002.
    • (2002) IEEE Transactions on Automatic Control , vol.47 , Issue.10 , pp. 1624-1636
    • Ormoneit, D.1    Glynn, P.2
  • 26
    • 0036832956 scopus 로고    scopus 로고
    • Kernel-based reinforcement learning
    • D. Ormoneit and S. Sen. Kernel-based reinforcement learning. Machine Learning, 49(2-3):161-178, 2002.
    • (2002) Machine Learning , vol.49 , Issue.2-3 , pp. 161-178
    • Ormoneit, D.1    Sen, S.2
  • 27
    • 85059390236 scopus 로고
    • Transient stability of power systems: Theory and practice
    • M. Pavella and P.G.Murthy. Transient Stability of Power Systems: Theory and Practice. John Wiley & Sons, 1994.
    • (1994) John Wiley Sons
    • Pavella, M.1    Murthy, P.G.2
  • 29
    • 0001509947 scopus 로고    scopus 로고
    • Using randomization to break the curse of dimensionality
    • J. Rust. Using randomization to break the curse of dimensionality. Econometrica, 65(3):487-516, 1997.
    • (1997) Econometrica , vol.65 , Issue.3 , pp. 487-516
    • Rust, J.1
  • 30
    • 84898972974 scopus 로고    scopus 로고
    • Reinforcement learning for dynamical channel allocation in cellular telephone systems
    • M.C. Mozer, M.I. Jordan, and T. Petsche, editors The MIT Press
    • S. Singh and D. Bertsekas. Reinforcement learning for dynamical channel allocation in cellular telephone systems. In M.C. Mozer, M.I. Jordan, and T. Petsche, editors, Advances in Neural Information Processing Systems, volume 9, pages 974-980. The MIT Press, 1997.
    • (1997) Advances in Neural Information Processing Systems , vol.9 , pp. 974-980
    • Singh, S.1    Bertsekas, D.2
  • 31
    • 85132026293 scopus 로고
    • Integrated architectures for learning, planning and reacting based on approximating dynamic programming
    • San Mateo, CA Morgan Kaufmann
    • R.S. Sutton. Integrated architectures for learning, planning and reacting based on approximating dynamic programming. In Proceedings of the Seventh International Conference on Machine Learning, pages 216-224, San Mateo, CA, 1990. Morgan Kaufmann.
    • (1990) Proceedings of the Seventh International Conference on Machine Learning , pp. 216-224
    • Sutton, R.S.1
  • 34
    • 0000985504 scopus 로고
    • TD-Gammon a self-Teaching backgammon program achieves master-level play
    • G.J. Tesauro. TD-Gammon, a self-Teaching backgammon program, achieves master-level play. Neural Computation, 6(2):215-219, 1994.
    • (1994) Neural Computation , vol.6 , Issue.2 , pp. 215-219
    • Tesauro, G.J.1
  • 35
    • 0029752470 scopus 로고    scopus 로고
    • Feature-based methods for large-scale dynamic programming
    • J.N. Tsitsiklis and B. Van Roy. Feature-based methods for large-scale dynamic programming. Machine Learning, 22:59-94, 1996.
    • (1996) Machine Learning , vol.22 , pp. 59-94
    • Tsitsiklis, J.N.1    Van Roy, B.2
  • 37
    • 0242443337 scopus 로고    scopus 로고
    • Implementation of adaptive critic-based neurocontrollers for turbogenerators in a multimachine power system
    • G.K. Venayagamoorthy, R.G. Harley, and D.C. Wunsch. Implementation of adaptive critic-based neurocontrollers for turbogenerators in a multimachine power system. IEEE Transactions on Neural Networks, 14(5): 1047-1064, 2003.
    • (2003) IEEE Transactions on Neural Networks , vol.14 , Issue.5 , pp. 1047-1064
    • Venayagamoorthy, G.K.1    Harley, R.G.2    Wunsch, D.C.3
  • 39
    • 0037942525 scopus 로고    scopus 로고
    • Emergency control and its strategies
    • Trondheim, Norway
    • L. Wehenkel. Emergency control and its strategies. In Proceedings of the 13-Th PSCC, pages 35-48, Trondheim, Norway, 1999.
    • (1999) Proceedings of the 13-Th PSCC , pp. 35-48
    • Wehenkel, L.1
  • 41
    • 0000337576 scopus 로고
    • Simple statistical gradient-following algorithms for connectionist reinforcement learning
    • R.J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning. Machine Learning, 8:229-256, 1992.
    • (1992) Machine Learning , vol.8 , pp. 229-256
    • Williams, R.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.