-
1
-
-
33846627756
-
Electromechanical resonators from graphene sheets
-
DOI 10.1126/science.1136836
-
J. S. Bunch, A. M. van der Zande, S. S. Verbridge, I. W. Frank, D. M. Tanenbaum, J. M. Parpia, H. G. Craighead, and P. L. McEuen, Science 315, 490 (2007). 10.1126/science.1136836 (Pubitemid 46178391)
-
(2007)
Science
, vol.315
, Issue.5811
, pp. 490-493
-
-
Bunch, J.S.1
Van Der Zande, A.M.2
Verbridge, S.S.3
Frank, I.W.4
Tanenbaum, D.M.5
Parpia, J.M.6
Craighead, H.G.7
McEuen, P.L.8
-
2
-
-
34948858511
-
Carbon-based electronics
-
DOI 10.1038/nnano.2007.300, PII NNANO2007300
-
P. Avouris, Z. H. Chen, and V. Perebeinos, Nature Nanotech. 2, 605 (2007). 10.1038/nnano.2007.300 (Pubitemid 47525190)
-
(2007)
Nature Nanotechnology
, vol.2
, Issue.10
, pp. 605-615
-
-
Avouris, P.1
Chen, Z.2
Perebeinos, V.3
-
3
-
-
0037741962
-
Electrically induced optical emission from a carbon nanotube FET
-
DOI 10.1126/science.1081294
-
J. A. Misewich, R. Martel, P. Avouris, J. C. Tsang, S. Heinze, and J. Tersoff, Science 300, 783 (2003). 10.1126/science.1081294 (Pubitemid 36532110)
-
(2003)
Science
, vol.300
, Issue.5620
, pp. 783-786
-
-
Misewich, J.A.1
Martel, R.2
Avouris, Ph.3
Tsang, J.C.4
Heinze, S.5
Tersoff, J.6
-
4
-
-
0035891289
-
Hydrogen-storage materials for mobile applications
-
DOI 10.1038/35104634
-
L. Schlapbach and A. Zttel, Nature 414, 353 (2001). 10.1038/35104634 (Pubitemid 33097818)
-
(2001)
Nature
, vol.414
, Issue.6861
, pp. 353-358
-
-
Schlapbach, L.1
Zuttel, A.2
-
6
-
-
56149113622
-
-
10.1021/nl802558y
-
M. D. Stoller, S. Park, Y. Zhu, J. An, and R. S. Ruoff, Nano Lett. 8, 3498 (2008). 10.1021/nl802558y
-
(2008)
Nano Lett.
, vol.8
, pp. 3498
-
-
Stoller, M.D.1
Park, S.2
Zhu, Y.3
An, J.4
Ruoff, R.S.5
-
8
-
-
79952515416
-
-
10.1103/PhysRevLett.106.105505
-
J. Kotakoski, A. V. Krasheninnikov, U. Kaiser, and J. C. Meyer, Phys. Rev. Lett. 106, 105505 (2011). 10.1103/PhysRevLett.106.105505
-
(2011)
Phys. Rev. Lett.
, vol.106
, pp. 105505
-
-
Kotakoski, J.1
Krasheninnikov, A.V.2
Kaiser, U.3
Meyer, J.C.4
-
9
-
-
4344607594
-
Direct evidence for atomic defects in graphene layers
-
DOI 10.1038/nature02817
-
A. Hashimoto, K. Suenaga, A. Gloter, K. Urita, and S. Iijima, Nature 430, 870 (2004). 10.1038/nature02817 (Pubitemid 39119210)
-
(2004)
Nature
, vol.430
, Issue.7002
, pp. 870-873
-
-
Hashimoto, A.1
Suenaga, K.2
Gloter, A.3
Urita, K.4
Iijima, S.5
-
11
-
-
78751642669
-
-
10.1038/nature09718
-
P. Y. Huang, C. S. Ruiz-Vargas, A. M. van der Zande, W. S. Whitney, M. P. Levendorf, J. W. Kevek, S. Garg, J. S. Alden, C. J. Hustedt, Y. Zhu, J. Park, P. L. McEuen, and D. A. Muller, Nature 469, 389 (2011). 10.1038/nature09718
-
(2011)
Nature
, vol.469
, pp. 389
-
-
Huang, P.Y.1
Ruiz-Vargas, C.S.2
Van Der Zande, A.M.3
Whitney, W.S.4
Levendorf, M.P.5
Kevek, J.W.6
Garg, S.7
Alden, J.S.8
Hustedt, C.J.9
Zhu, Y.10
Park, J.11
McEuen, P.L.12
Muller, D.A.13
-
12
-
-
33144465627
-
Structural, electronic, and chemical properties of nanoporous carbon
-
DOI 10.1103/PhysRevLett.96.046806
-
J. M. Carlsson and M. Scheffler, Phys. Rev. Lett. 96, 046806 (2006). 10.1103/PhysRevLett.96.046806 (Pubitemid 43270936)
-
(2006)
Physical Review Letters
, vol.96
, Issue.4
, pp. 046806
-
-
Carlsson, J.M.1
Scheffler, M.2
-
13
-
-
41749089788
-
-
10.1103/PhysRevB.77.165405
-
S. Berber and A. Oshiyama, Phys. Rev. B 77, 165405 (2008). 10.1103/PhysRevB.77.165405
-
(2008)
Phys. Rev. B
, vol.77
, pp. 165405
-
-
Berber, S.1
Oshiyama, A.2
-
15
-
-
43049123411
-
Nanoengineering defect structures on graphene
-
DOI 10.1103/PhysRevLett.100.175503
-
M.T. Lusk and L.D. Carr, Phys. Rev. Lett. 100, 175503 (2008). 10.1103/PhysRevLett.100.175503 (Pubitemid 351624679)
-
(2008)
Physical Review Letters
, vol.100
, Issue.17
, pp. 175503
-
-
Lusk, M.T.1
Carr, L.D.2
-
16
-
-
78649721101
-
-
10.1103/PhysRevB.82.195439
-
K. E. Kweon and G. S. Hwang, Phys. Rev. B 82, 195439 (2010). 10.1103/PhysRevB.82.195439
-
(2010)
Phys. Rev. B
, vol.82
, pp. 195439
-
-
Kweon, K.E.1
Hwang, G.S.2
-
17
-
-
28844492043
-
Diffusion, coalescence, and reconstruction of vacancy defects in graphene layers
-
DOI 10.1103/PhysRevLett.95.205501, 205501
-
G.-D. Lee, C. Z. Wang, E. Yoon, N.-M. Hwang, D.-Y. Kim, and K. M. Ho, Phys. Rev. Lett. 95, 205501 (2005). 10.1103/PhysRevLett.95.205501 (Pubitemid 41777131)
-
(2005)
Physical Review Letters
, vol.95
, Issue.20
, pp. 1-4
-
-
Lee, G.-D.1
Wang, C.Z.2
Yoon, E.3
Hwang, N.-M.4
Kim, D.-Y.5
Ho, K.M.6
-
19
-
-
45849155590
-
-
10.1103/PhysRevLett.89.075505
-
M. Terrones, F. Banhart, N. Grobert, J.-C. Charlier, H. Terrones, and P. M. Ajayan, Phys. Rev. Lett. 89, 075505 (2002). 10.1103/PhysRevLett.89.075505
-
(2002)
Phys. Rev. Lett.
, vol.89
, pp. 075505
-
-
Terrones, M.1
Banhart, F.2
Grobert, N.3
Charlier, J.-C.4
Terrones, H.5
Ajayan, P.M.6
-
21
-
-
77955402155
-
-
10.1103/PhysRevB.81.153401
-
O. Lehtinen, J. Kotakoski, A. V. Krasheninnikov, A. Tolvanen, K. Nordlund, and J. Keinonen, Phys. Rev. B 81, 153401 (2010). 10.1103/PhysRevB.81. 153401
-
(2010)
Phys. Rev. B
, vol.81
, pp. 153401
-
-
Lehtinen, O.1
Kotakoski, J.2
Krasheninnikov, A.V.3
Tolvanen, A.4
Nordlund, K.5
Keinonen, J.6
-
22
-
-
34247847711
-
-
10.1103/PhysRevB.75.205406
-
M. Yasuda, Y. Kimoto, K. Tada, H. Mori, S. Akita, Y. Nakayama, and Y. Hirai, Phys. Rev. B 75, 205406 (2007). 10.1103/PhysRevB.75.205406
-
(2007)
Phys. Rev. B
, vol.75
, pp. 205406
-
-
Yasuda, M.1
Kimoto, Y.2
Tada, K.3
Mori, H.4
Akita, S.5
Nakayama, Y.6
Hirai, Y.7
-
24
-
-
68949192681
-
-
10.1038/nnano.2009.194
-
J. H. Warner, M. H. Rummeli, L. Ge, T. Gemming, B. Montanari, N. M. Harrison, B. Buchner, and G. A. D. Briggs, Nature Nanotech. 4, 500 (2009). 10.1038/nnano.2009.194
-
(2009)
Nature Nanotech.
, vol.4
, pp. 500
-
-
Warner, J.H.1
Rummeli, M.H.2
Ge, L.3
Gemming, T.4
Montanari, B.5
Harrison, N.M.6
Buchner, B.7
Briggs, G.A.D.8
-
25
-
-
33744466540
-
Carbon nanotubes as high-pressure cylinders and nanoextruders
-
DOI 10.1126/science.1124594
-
L. Sun, F. Banhart, A. V. Krasheninnikov, J. A. Rodrguez-Manzo, M. Terrones, and P. M. Ajayan, Science 312, 1199 (2006). 10.1126/science.1124594 (Pubitemid 43801142)
-
(2006)
Science
, vol.312
, Issue.5777
, pp. 1199-1202
-
-
Sun, L.1
Banhart, F.2
Krasheninnikov, A.V.3
Rodriguez-Manzo, J.A.4
Terrones, M.5
Ajayan, P.M.6
-
26
-
-
54049151170
-
-
10.1103/PhysRevLett.101.156101
-
L. Sun, A. V. Krasheninnikov, T. Ahlgren, K. Nordlund, and F. Banhart, Phys. Rev. Lett. 101, 156101 (2008). 10.1103/PhysRevLett.101.156101
-
(2008)
Phys. Rev. Lett.
, vol.101
, pp. 156101
-
-
Sun, L.1
Krasheninnikov, A.V.2
Ahlgren, T.3
Nordlund, K.4
Banhart, F.5
-
28
-
-
5744249209
-
-
10.1063/1.1699114
-
N. Metropolis, A. E. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, J. Chem. Phys. 21, 1087 (1953). 10.1063/1.1699114
-
(1953)
J. Chem. Phys.
, vol.21
, pp. 1087
-
-
Metropolis, N.1
Rosenbluth, A.E.2
Rosenbluth, M.N.3
Teller, A.H.4
Teller, E.5
-
30
-
-
33645898818
-
-
10.1103/PhysRevB.45.13244
-
J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992). 10.1103/PhysRevB.45.13244
-
(1992)
Phys. Rev. B
, vol.45
, pp. 13244
-
-
Perdew, J.P.1
Wang, Y.2
-
31
-
-
20544463457
-
-
10.1103/PhysRevB.41.7892
-
D. Vanderbilt, Phys. Rev. B 41, 7892 (1990). 10.1103/PhysRevB.41.7892
-
(1990)
Phys. Rev. B
, vol.41
, pp. 7892
-
-
Vanderbilt, D.1
-
33
-
-
68949122905
-
-
10.1103/PhysRevB.79.241409
-
V. Perebeinos and J. Tersoff, Phys. Rev. B 79, 241409 (2009). 10.1103/PhysRevB.79.241409
-
(2009)
Phys. Rev. B
, vol.79
, pp. 241409
-
-
Perebeinos, V.1
Tersoff, J.2
-
34
-
-
0025140824
-
-
10.1021/ja00165a020
-
R. C. Haddon, J. Am. Chem. Soc. 112, 3385 (1990); 10.1021/ja00165a020
-
(1990)
J. Am. Chem. Soc.
, vol.112
, pp. 3385
-
-
Haddon, R.C.1
-
35
-
-
33845280943
-
-
10.1021/ar00150a005
-
R. C. Haddon, Acc. Chem. Res. 21, 243 (1988). 10.1021/ar00150a005
-
(1988)
Acc. Chem. Res.
, vol.21
, pp. 243
-
-
Haddon, R.C.1
-
38
-
-
33845374947
-
-
10.1021/ja00271a009
-
R. C. Haddon, J. Am. Chem. Soc. 108, 2837 (1986). 10.1021/ja00271a009
-
(1986)
J. Am. Chem. Soc.
, vol.108
, pp. 2837
-
-
Haddon, R.C.1
-
39
-
-
0035861045
-
Effect of rehybridization on the electronic structure of single-walled carbon nanotubes [2]
-
DOI 10.1021/ja0109702
-
M. A. Hamon, M. E. Itkis, S. Niyogi, T. Alvaraez, C. Kuper, M. Menon, and R. C. Haddon, J. Am. Chem. Soc. 123, 11292 (2001). 10.1021/ja0109702 (Pubitemid 33065367)
-
(2001)
Journal of the American Chemical Society
, vol.123
, Issue.45
, pp. 11292-11293
-
-
Hamon, M.A.1
Itkis, M.E.2
Niyogi, S.3
Alvaraez, T.4
Kuper, C.5
Menon, M.6
Haddon, R.C.7
-
43
-
-
29644445226
-
Defect energies of graphite: Density-functional calculations
-
DOI 10.1103/PhysRevB.72.184109, 184109
-
L. Li, S. Reich, and J. Robertson, Phys. Rev. B 72, 184109 (2005). 10.1103/PhysRevB.72.184109 (Pubitemid 43021956)
-
(2005)
Physical Review B - Condensed Matter and Materials Physics
, vol.72
, Issue.18
, pp. 1-10
-
-
Li, L.1
Reich, S.2
Robertson, J.3
-
44
-
-
33644817086
-
-
10.1103/PhysRevB.42.9458
-
D. W. Brenner, Phys. Rev. B 42, 9458 (1990). 10.1103/PhysRevB.42.9458
-
(1990)
Phys. Rev. B
, vol.42
, pp. 9458
-
-
Brenner, D.W.1
-
45
-
-
57749090769
-
-
10.1021/nl801386m
-
J. C. Meyer, C. Kisielowski, R. Erni, M. D. Rossell, M. F. Crommie, and A. Zettl, Nano Lett. 8, 3582 (2008). 10.1021/nl801386m
-
(2008)
Nano Lett.
, vol.8
, pp. 3582
-
-
Meyer, J.C.1
Kisielowski, C.2
Erni, R.3
Rossell, M.D.4
Crommie, M.F.5
Zettl, A.6
-
46
-
-
0032565966
-
36, a new carbon solid
-
DOI 10.1038/31668
-
C. Piskoti, J. Yarger, and A. Zettl, Nature 393, 771 (1998). 10.1038/31668 (Pubitemid 28299484)
-
(1998)
Nature
, vol.393
, Issue.6687
, pp. 771-774
-
-
Piskoti, C.1
Yarger, J.2
Zettl, A.3
-
47
-
-
1542743726
-
-
10.1038/318162a0
-
H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, and R. E. Smalley, Nature 318, 162 (1985). 10.1038/318162a0
-
(1985)
Nature
, vol.318
, pp. 162
-
-
Kroto, H.W.1
Heath, J.R.2
O'Brien, S.C.3
Curl, R.F.4
Smalley, R.E.5
-
49
-
-
34250872670
-
-
10.1038/329529a0
-
H. W. Kroto, Nature 329, 529 (1987). 10.1038/329529a0
-
(1987)
Nature
, vol.329
, pp. 529
-
-
Kroto, H.W.1
-
50
-
-
33845279213
-
-
10.1021/ja00212a020
-
T. G. Schmalz, W. A. Seitz, D. J. Klein, and G. E. Hite, J. Am. Chem. Soc. 110, 1113 (1988). 10.1021/ja00212a020
-
(1988)
J. Am. Chem. Soc.
, vol.110
, pp. 1113
-
-
Schmalz, T.G.1
Seitz, W.A.2
Klein, D.J.3
Hite, G.E.4
-
51
-
-
17544368145
-
-
10.1021/jp983648v
-
J. G. Kushmeric, K. F. Kelly, H.-P. Rust, N. J. Halas, and P. S. Weiss, J. Phys. Chem. B 103, 1619 (1999). 10.1021/jp983648v
-
(1999)
J. Phys. Chem. B
, vol.103
, pp. 1619
-
-
Kushmeric, J.G.1
Kelly, K.F.2
Rust, H.-P.3
Halas, N.J.4
Weiss, P.S.5
-
52
-
-
0347579807
-
-
10.1103/PhysRevB.60.6007
-
J. R. Hahn and H. Kang, Phys. Rev. B 60, 6007 (1999). 10.1103/PhysRevB.60.6007
-
(1999)
Phys. Rev. B
, vol.60
, pp. 6007
-
-
Hahn, J.R.1
Kang, H.2
-
54
-
-
2442632961
-
-
10.1103/PhysRevB.68.144107
-
A. A. El-Barbary, R. H. Telling, C. P. Ewels, M. I. Heggie, and P. R. Briddon, Phys. Rev. B 68, 144107 (2003). 10.1103/PhysRevB.68.144107
-
(2003)
Phys. Rev. B
, vol.68
, pp. 144107
-
-
El-Barbary, A.A.1
Telling, R.H.2
Ewels, C.P.3
Heggie, M.I.4
Briddon, P.R.5
-
55
-
-
57349130642
-
-
10.1038/nnano.2008.280
-
M. H. Gass, U. Bangert, A. L. Bleloch, P. Wang, R. R. Nair, and A. K. Geim, Nature Nanotechnol. 3, 676 (2008). 10.1038/nnano.2008.280
-
(2008)
Nature Nanotechnol.
, vol.3
, pp. 676
-
-
Gass, M.H.1
Bangert, U.2
Bleloch, A.L.3
Wang, P.4
Nair, R.R.5
Geim, A.K.6
-
56
-
-
81355155132
-
-
For a single vacancy in graphene, for instance, removal of one C atom is followed by symmetry-lowering lattice relaxation that causes two neighboring atoms to form a weak covalent bond. The remaining unsaturated C atom protrudes out of plane, due in part to the repulsion between the unpaired and paired electrons. With penalty energy of about 2.6 eV per dangling bond, the VFF model tends to provide a good match with the calculated DFT vacancy formation energy; however, more sophisticated potential models are needed in order to accurately describe the nature of bond-coordination defects such as weak bond formation
-
For a single vacancy in graphene, for instance, removal of one C atom is followed by symmetry-lowering lattice relaxation that causes two neighboring atoms to form a weak covalent bond. The remaining unsaturated C atom protrudes out of plane, due in part to the repulsion between the unpaired and paired electrons. With penalty energy of about 2.6 eV per dangling bond, the VFF model tends to provide a good match with the calculated DFT vacancy formation energy; however, more sophisticated potential models are needed in order to accurately describe the nature of bond-coordination defects such as weak bond formation.
-
-
-
|