메뉴 건너뛰기




Volumn 6, Issue 2, 2012, Pages 189-211

Stochastic epidemic models revisited: Analysis of some continuous performance measures

Author keywords

extinction time; head lice; recovery time; stochastic SIR model; stochastic SIS model; time to infection

Indexed keywords

ANIMAL; ARTICLE; BIOLOGICAL MODEL; EPIDEMIC; HUMAN; PARASITOLOGY; PEDICULOSIS; PEDICULUS; PHYSIOLOGY; PROBABILITY; STATISTICS; TIME;

EID: 81155147087     PISSN: 17513758     EISSN: 17513766     Source Type: Journal    
DOI: 10.1080/17513758.2011.552737     Document Type: Article
Times cited : (17)

References (36)
  • 1
    • 0001936263 scopus 로고
    • Numerical inversion of Laplace transforms of probability distributions
    • Abate, J. and Whitt, W. 1995. Numerical inversion of Laplace transforms of probability distributions. ORSA J. Comput., 7: 36-43.
    • (1995) ORSA J. Comput. , vol.7 , pp. 36-43
    • Abate, J.1    Whitt, W.2
  • 3
    • 0011481308 scopus 로고    scopus 로고
    • Stochastic Epidemic Models and Their Statistical Analysis
    • New York: Springer New York
    • Andersson, H. and Britton, T. 2000. "Stochastic Epidemic Models and Their Statistical Analysis". In Lecture Notes in Statistics, Vol. 151, New York: Springer.
    • (2000) Lecture Notes in Statistics , vol.151
    • Andersson, H.1    Britton, T.2
  • 4
    • 38349008670 scopus 로고    scopus 로고
    • Evaluating growth measures in an immigration process subject to binomial and geometric catastrophes
    • Artalejo, J. R., Economou, A. and Lopez-Herrero, M. J. 2007. Evaluating growth measures in an immigration process subject to binomial and geometric catastrophes. Math. Biosci. Eng., 4: 573-594.
    • (2007) Math. Biosci. Eng. , vol.4 , pp. 573-594
    • Artalejo, J.R.1    Economou, A.2    Lopez-Herrero, M.J.3
  • 6
    • 0016745228 scopus 로고
    • The duration of the closed stochastic epidemic
    • Barbour, A. D. 1975. The duration of the closed stochastic epidemic. Biometrika, 62: 477-482.
    • (1975) Biometrika , vol.62 , pp. 477-482
    • Barbour, A.D.1
  • 7
    • 77957184001 scopus 로고
    • The stochastic general epidemic model revisited and a generalization
    • Billard, L. and Zhao, Z. 1993. The stochastic general epidemic model revisited and a generalization. IMA J. Math. Appl. Med., 10: 67-75.
    • (1993) IMA J. Math. Appl. Med. , vol.10 , pp. 67-75
    • Billard, L.1    Zhao, Z.2
  • 8
    • 33845386725 scopus 로고    scopus 로고
    • Optimal intervention for an epidemic model under parameter uncertainty
    • Clancy, D. and Green, N. 2007. Optimal intervention for an epidemic model under parameter uncertainty. Math. Biosci., 205: 297-314.
    • (2007) Math. Biosci. , vol.205 , pp. 297-314
    • Clancy, D.1    Green, N.2
  • 9
    • 77955097265 scopus 로고    scopus 로고
    • A stochastic SIR model with contact-tracing: Large population limits and statistical inference
    • Clémençon, S., Tran, V. C. and de Arazoza, H. 2008. A stochastic SIR model with contact-tracing: Large population limits and statistical inference. J. Biol. Dyn., 2: 392-414.
    • (2008) J. Biol. Dyn. , vol.2 , pp. 392-414
    • Clémençon, S.1    Tran, V.C.2    de Arazoza, H.3
  • 11
    • 33751577213 scopus 로고    scopus 로고
    • Quasi-stationary distributions for a class of discrete-time Markov chains
    • Coolen-Schrijner, P. and van Doorn, E. A. 2006. Quasi-stationary distributions for a class of discrete-time Markov chains. Methodol. Comput. Appl. Probab., 8: 449-465.
    • (2006) Methodol. Comput. Appl. Probab. , vol.8 , pp. 449-465
    • Coolen-Schrijner, P.1    van Doorn, E.A.2
  • 12
    • 0007160306 scopus 로고    scopus 로고
    • Epidemic Modelling: An Introduction
    • Cambridge: Cambridge University Press Cambridge
    • Daley, D. J. and Gani, J. 1999. "Epidemic Modelling: An Introduction". In Cambridge Studies in Mathematical Biology, Vol. 15, Cambridge: Cambridge University Press.
    • (1999) Cambridge Studies in Mathematical Biology , vol.15
    • Daley, D.J.1    Gani, J.2
  • 14
    • 21844433698 scopus 로고    scopus 로고
    • Extinction times for birth-death processes: Exact results, continuum asymptotics, and the failure of the Fokker-Planck approximation
    • Doering, C. R., Sargsyan, K. V. and Sander, L. M. 2005. Extinction times for birth-death processes: Exact results, continuum asymptotics, and the failure of the Fokker-Planck approximation. Multiscale Model. Simul., 3: 283-299.
    • (2005) Multiscale Model. Simul. , vol.3 , pp. 283-299
    • Doering, C.R.1    Sargsyan, K.V.2    Sander, L.M.3
  • 15
    • 0013826540 scopus 로고
    • On a partial differential equation of epidemic theory I
    • Gani, J. 1965. On a partial differential equation of epidemic theory I. Biometrika, 52: 617-622.
    • (1965) Biometrika , vol.52 , pp. 617-622
    • Gani, J.1
  • 17
    • 27144549311 scopus 로고    scopus 로고
    • The scaling and squaring method for the matrix exponential revisited
    • Higham, N. J. 2005. The scaling and squaring method for the matrix exponential revisited. SIAM J. Matrix Anal. Appl., 26: 1179-1193.
    • (2005) SIAM J. Matrix Anal. Appl. , vol.26 , pp. 1179-1193
    • Higham, N.J.1
  • 18
    • 67650645769 scopus 로고    scopus 로고
    • The impact of well-developed preventative strategies on the eradication of head lice
    • Ibarra, J., Fry, F., Wickenden, C., Jenner, M. and Franks, A. 2009. The impact of well-developed preventative strategies on the eradication of head lice. Perspect. Public Heal., 129: 165-173.
    • (2009) Perspect. Public Heal. , vol.129 , pp. 165-173
    • Ibarra, J.1    Fry, F.2    Wickenden, C.3    Jenner, M.4    Franks, A.5
  • 19
    • 34748819807 scopus 로고
    • A review of transient behaviour in regular diffusion and birth-death processes, Part I
    • Keilson, J. 1964. A review of transient behaviour in regular diffusion and birth-death processes, Part I. J. Appl. Probab., 1: 247-266.
    • (1964) J. Appl. Probab. , vol.1 , pp. 247-266
    • Keilson, J.1
  • 20
    • 0000311552 scopus 로고
    • On the extinction of the S-I-S stochastic logistic epidemic
    • Kryscio, R. J. and Lefèvre, C. 1989. On the extinction of the S-I-S stochastic logistic epidemic. J. Appl. Probab., 27: 685-694.
    • (1989) J. Appl. Probab. , vol.27 , pp. 685-694
    • Kryscio, R.J.1    Lefèvre, C.2
  • 23
    • 78349312707 scopus 로고    scopus 로고
    • A scaling analysis in the SIRI epidemiological model
    • Martins, J., Pinto, A. and Stollenwerk, N. 2009. A scaling analysis in the SIRI epidemiological model. J. Biol. Dyn., 3: 479-496.
    • (2009) J. Biol. Dyn. , vol.3 , pp. 479-496
    • Martins, J.1    Pinto, A.2    Stollenwerk, N.3
  • 24
    • 77949699510 scopus 로고    scopus 로고
    • Multi-patch deterministic and stochastic models for wildlife diseases
    • McCormack, R. K. and Allen, L. J.S. 2007. Multi-patch deterministic and stochastic models for wildlife diseases. J. Biol. Dyn., 1: 63-85.
    • (2007) J. Biol. Dyn. , vol.1 , pp. 63-85
    • McCormack, R.K.1    Allen, L.J.S.2
  • 25
    • 0037354371 scopus 로고    scopus 로고
    • Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later
    • Moler, C. B. and Van Loan, C. F. 2003. Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Rev., 45: 3-49.
    • (2003) SIAM Rev. , vol.45 , pp. 3-49
    • Moler, C.B.1    van Loan, C.F.2
  • 27
    • 0002242439 scopus 로고
    • The threshold concept in stochastic epidemic and endemic models
    • In: Mollison D., editors Cambridge: Cambridge University Press Cambridge
    • Nåsell, I. 1995. "The threshold concept in stochastic epidemic and endemic models". In Epidemic Models: Their Structure and Relation to Data, Edited by: Mollison, D. 71-83. Cambridge: Cambridge University Press.
    • (1995) Epidemic Models: Their Structure and Relation to Data , pp. 71-83
    • Nåsell, I.1
  • 28
    • 0033475339 scopus 로고    scopus 로고
    • On the time to extinction in recurrent epidemics
    • Nåsell, I. 1999. On the time to extinction in recurrent epidemics. J. R. Statist. Soc, B 61: 309-330.
    • (1999) J. R. Statist. Soc , vol.B 61 , pp. 309-330
    • Nåsell, I.1
  • 29
    • 0035822368 scopus 로고    scopus 로고
    • Extinction and quasi-stationarity in the Verhulst logistic model
    • Nåsell, I. 2001. Extinction and quasi-stationarity in the Verhulst logistic model. J. Theor. Biol., 211: 11-27.
    • (2001) J. Theor. Biol. , vol.211 , pp. 11-27
    • Nåsell, I.1
  • 30
    • 0036293119 scopus 로고    scopus 로고
    • Stochastic models of some endemic infections
    • Nåsell, I. 2002. Stochastic models of some endemic infections. Math. Biosci., 179: 1-19.
    • (2002) Math. Biosci. , vol.179 , pp. 1-19
    • Nåsell, I.1
  • 31
    • 1242277202 scopus 로고    scopus 로고
    • Extinction times and moment closure in the stochastic logistic process
    • Newman, T. J., Ferdy, J. B. and Quince, C. 2004. Extinction times and moment closure in the stochastic logistic process. Theor. Popul. Biol., 65: 115-126.
    • (2004) Theor. Popul. Biol. , vol.65 , pp. 115-126
    • Newman, T.J.1    Ferdy, J.B.2    Quince, C.3
  • 32
    • 0001630503 scopus 로고
    • On the distribution of the time to extinction in the stochastic logistic population model
    • Norden, R. H. 1982. On the distribution of the time to extinction in the stochastic logistic population model. Adv. Appl. Probab., 14: 687-708.
    • (1982) Adv. Appl. Probab. , vol.14 , pp. 687-708
    • Norden, R.H.1
  • 34
    • 34948901219 scopus 로고
    • Generalizations of some stochastic epidemic models
    • Severo, N. C. 1969. Generalizations of some stochastic epidemic models. Math. Biosci., 4: 395-402.
    • (1969) Math. Biosci. , vol.4 , pp. 395-402
    • Severo, N.C.1
  • 35
    • 41149115138 scopus 로고    scopus 로고
    • A stochastic model for head lice infections
    • Stone, P., Wilkinson-Herbots, H. and Isham, V. 2008. A stochastic model for head lice infections. J. Math. Biol., 56: 743-763.
    • (2008) J. Math. Biol. , vol.56 , pp. 743-763
    • Stone, P.1    Wilkinson-Herbots, H.2    Isham, V.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.