메뉴 건너뛰기




Volumn 29, Issue 3, 2011, Pages 657-695

Geometric data perturbation for privacy preserving outsourced data mining

Author keywords

Data mining algorithms; Data perturbation; Geometric data perturbation; Privacy evaluation; Privacy preserving data mining

Indexed keywords


EID: 81155123637     PISSN: 02191377     EISSN: 02193116     Source Type: Journal    
DOI: 10.1007/s10115-010-0362-4     Document Type: Article
Times cited : (93)

References (41)
  • 14
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: a gradient boosting machine
    • Friedman JH (2001) Greedy function approximation: a gradient boosting machine. Ann Stat 29(5): 1189-1232.
    • (2001) Ann Stat , vol.29 , Issue.5 , pp. 1189-1232
    • Friedman, J.H.1
  • 15
    • 77951201056 scopus 로고    scopus 로고
    • Privacy-preserving data publishing: a survey on recent developments
    • Fung BC, Wang K, Chen R, Yu PS (2010) Privacy-preserving data publishing: a survey on recent developments. ACM Comput Surv 42(4): 1-53.
    • (2010) ACM Comput Surv , vol.42 , Issue.4 , pp. 1-53
    • Fung, B.C.1    Wang, K.2    Chen, R.3    Yu, P.S.4
  • 17
    • 81155147405 scopus 로고    scopus 로고
    • Google (n.d.)
    • Google (n. d.) Google appengine gallery. http://appgallery. appspot. com/.
    • Google appengine gallery
  • 19
    • 56749173528 scopus 로고    scopus 로고
    • Determining error bounds for spectral filtering based reconstruction methods in privacy preserving data mining
    • Guo S, Wu X, Li Y (2008) Determining error bounds for spectral filtering based reconstruction methods in privacy preserving data mining. Knowl Inform Syst 17(2): 217-240.
    • (2008) Knowl Inform Syst , vol.17 , Issue.2 , pp. 217-240
    • Guo, S.1    Wu, X.2    Li, Y.3
  • 24
    • 33750157608 scopus 로고    scopus 로고
    • How many entries in a typical orthogonal matrix can be approximated by independent normals
    • Jiang T (2006) How many entries in a typical orthogonal matrix can be approximated by independent normals. Ann Prob 34(4): 1497-1529.
    • (2006) Ann Prob , vol.34 , Issue.4 , pp. 1497-1529
    • Jiang, T.1
  • 25
    • 0001654702 scopus 로고
    • Extensions of lipshitz mapping into hilbert space
    • Johnson WB, Lindenstrauss J (1984) Extensions of lipshitz mapping into hilbert space. Contemp Math 26: 189-206.
    • (1984) Contemp Math , vol.26 , pp. 189-206
    • Johnson, W.B.1    Lindenstrauss, J.2
  • 29
    • 33746437508 scopus 로고    scopus 로고
    • Privacy preserving data mining
    • Lindell Y, Pinkas B (2000) Privacy preserving data mining. J Cryptol 15(3): 177-206.
    • (2000) J Cryptol , vol.15 , Issue.3 , pp. 177-206
    • Lindell, Y.1    Pinkas, B.2
  • 31
    • 31344447750 scopus 로고    scopus 로고
    • Random projection-based multiplicative data perturbation for privacy preserving distributed data mining
    • Liu K, Kargupta H, Ryan J (2006) Random projection-based multiplicative data perturbation for privacy preserving distributed data mining. IEEE Trans Knowl Data Eng 18(1): 92-106.
    • (2006) IEEE Trans Knowl Data Eng , vol.18 , Issue.1 , pp. 92-106
    • Liu, K.1    Kargupta, H.2    Ryan, J.3
  • 32
    • 68349137913 scopus 로고    scopus 로고
    • A distributed approach to enabling privacy-preserving model-based classifier training
    • Luo H, Fan J, Lin X, Zhou A, Bertino E (2009) A distributed approach to enabling privacy-preserving model-based classifier training. Knowl Inform Syst 20(2): 157-185.
    • (2009) Knowl Inform Syst , vol.20 , Issue.2 , pp. 157-185
    • Luo, H.1    Fan, J.2    Lin, X.3    Zhou, A.4    Bertino, E.5
  • 35
    • 79958167312 scopus 로고    scopus 로고
    • Privacy preserving clustering by data transformation
    • Oliveira SR, Zaiane OR (2010) Privacy preserving clustering by data transformation. J Inform Data Manag (JIDM) 1(1): 67-82.
    • (2010) J Inform Data Manag (JIDM) , vol.1 , Issue.1 , pp. 67-82
    • Oliveira, S.R.1    Zaiane, O.R.2
  • 37
    • 0000485973 scopus 로고
    • The efficient generation of random orthogonal matrices with an application to condition estimation
    • Stewart G (1980) The efficient generation of random orthogonal matrices with an application to condition estimation. SIAM J Num Anal 17: 403-409.
    • (1980) SIAM J Num Anal , vol.17 , pp. 403-409
    • Stewart, G.1
  • 38
    • 0036811662 scopus 로고    scopus 로고
    • k-anonymity: a model for protecting privacy
    • Sweeney L (2002) k-anonymity: a model for protecting privacy. Int J Uncert Fuzz Knowl Based Syst 10(5): 557-570.
    • (2002) Int J Uncert Fuzz Knowl Based Syst , vol.10 , Issue.5 , pp. 557-570
    • Sweeney, L.1
  • 39
    • 67349248073 scopus 로고    scopus 로고
    • A hybrid multi-group approach for privacy-preserving data mining
    • Teng Z, Du W (2009) A hybrid multi-group approach for privacy-preserving data mining. Knowl Inform Syst 19(2): 133-157.
    • (2009) Knowl Inform Syst , vol.19 , Issue.2 , pp. 133-157
    • Teng, Z.1    Du, W.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.