메뉴 건너뛰기




Volumn 22, Issue 3-4, 2011, Pages 222-240

Global invariant manifolds in the transition to preturbulence in the Lorenz system

Author keywords

Cantor structure; Homoclinic explosion; Invariant manifolds; Lorenz system; Preturbulence

Indexed keywords


EID: 81055148298     PISSN: 00193577     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.indag.2011.10.007     Document Type: Article
Times cited : (36)

References (46)
  • 1
    • 0000675441 scopus 로고
    • The origin and structure of the Lorenz attractor
    • (in Russian)
    • Afrajmovich V.S., Bykov V.V., Sil'nikov L.P. The origin and structure of the Lorenz attractor. Dokl. Akad. Nauk SSSR 1977, 234(2):336-339. (in Russian).
    • (1977) Dokl. Akad. Nauk SSSR , vol.234 , Issue.2 , pp. 336-339
    • Afrajmovich, V.S.1    Bykov, V.V.2    Sil'nikov, L.P.3
  • 2
    • 79954562301 scopus 로고    scopus 로고
    • Investigating the consequences of global bifurcations for two-dimensional invariant manifolds of vector fields
    • Aguirre P., Doedel E.J., Krauskopf B., Osinga H.M. Investigating the consequences of global bifurcations for two-dimensional invariant manifolds of vector fields. Discrete Contin. Dyn. Syst. Ser. A 2011, 29(4):1309-1344.
    • (2011) Discrete Contin. Dyn. Syst. Ser. A , vol.29 , Issue.4 , pp. 1309-1344
    • Aguirre, P.1    Doedel, E.J.2    Krauskopf, B.3    Osinga, H.M.4
  • 3
    • 79959197178 scopus 로고    scopus 로고
    • Dynamical Systems and Chaos
    • Springer-Verlag, New York
    • Broer H.W., Takens F. Dynamical Systems and Chaos. Applied Mathematical Sciences 2011, vol. 172. Springer-Verlag, New York.
    • (2011) Applied Mathematical Sciences , vol.172
    • Broer, H.W.1    Takens, F.2
  • 4
    • 0030540448 scopus 로고    scopus 로고
    • Lorenz equations part I: existence and nonexistence of homoclinic orbits
    • Chen X. Lorenz equations part I: existence and nonexistence of homoclinic orbits. SIAM J. Matrix Anal. Appl. 1996, 27(4):1057-1069.
    • (1996) SIAM J. Matrix Anal. Appl. , vol.27 , Issue.4 , pp. 1057-1069
    • Chen, X.1
  • 5
    • 0011672661 scopus 로고    scopus 로고
    • Lorenz equations part II: "randomly" rotated homoclinic orbits and chaotic trajectories
    • Chen X. Lorenz equations part II: "randomly" rotated homoclinic orbits and chaotic trajectories. Discrete Contin. Dyn. Syst. 1996, 2:121-140.
    • (1996) Discrete Contin. Dyn. Syst. , vol.2 , pp. 121-140
    • Chen, X.1
  • 6
    • 81055132804 scopus 로고
    • Lorenz equations part III: existence of hyperbolic sets, IMA Preprint Series, # 1354.
    • X. Chen, Lorenz equations part III: existence of hyperbolic sets, IMA Preprint Series, 1995, # 1354.
    • (1995)
    • Chen, X.1
  • 7
    • 7944238420 scopus 로고
    • Knaster-like continua and complex dynamics
    • Devaney R.L. Knaster-like continua and complex dynamics. Ergodic Theory Dynam. Systems 1993, 13(4):627-634.
    • (1993) Ergodic Theory Dynam. Systems , vol.13 , Issue.4 , pp. 627-634
    • Devaney, R.L.1
  • 8
    • 84892356236 scopus 로고    scopus 로고
    • Lecture notes on numerical analysis of nonlinear equations
    • Springer-Verlag, New York, B. Krauskopf, H.M. Osinga, J. Galán-Vioque (Eds.) Numerical Continuation Methods for Dynamical Systems
    • Doedel E.J. Lecture notes on numerical analysis of nonlinear equations. Underst. Complex Syst. 2007, 1-49. Springer-Verlag, New York. B. Krauskopf, H.M. Osinga, J. Galán-Vioque (Eds.).
    • (2007) Underst. Complex Syst. , pp. 1-49
    • Doedel, E.J.1
  • 9
    • 81055153907 scopus 로고    scopus 로고
    • With major contributions from A. R. Champneys, T. F. Fairgrieve, Yu. A. Kuznetsov, B. E. Oldeman, R. C. Paffenroth, B. Sandstede, X. J. Wang, and C. Zhang. AUTO-07P: continuation and bifurcation software for ordinary differential equations. Available at: .
    • E.J. Doedel, With major contributions from A. R. Champneys, T. F. Fairgrieve, Yu. A. Kuznetsov, B. E. Oldeman, R. C. Paffenroth, B. Sandstede, X. J. Wang, and C. Zhang. AUTO-07P: continuation and bifurcation software for ordinary differential equations. Available at: http://cmvl.cs.concordia.ca/.
    • Doedel, E.J.1
  • 10
    • 33846058378 scopus 로고    scopus 로고
    • Global bifurcations of the Lorenz manifold
    • Doedel E.J., Krauskopf B., Osinga H.M. Global bifurcations of the Lorenz manifold. Nonlinearity 2006, 19:2947-2972.
    • (2006) Nonlinearity , vol.19 , pp. 2947-2972
    • Doedel, E.J.1    Krauskopf, B.2    Osinga, H.M.3
  • 11
    • 0001201892 scopus 로고    scopus 로고
    • Computer assisted proof of chaos in the Lorenz equations
    • Galias Z., Zgliczynski P. Computer assisted proof of chaos in the Lorenz equations. Physica D 1998, 115:165-188.
    • (1998) Physica D , vol.115 , pp. 165-188
    • Galias, Z.1    Zgliczynski, P.2
  • 12
    • 0021437639 scopus 로고
    • Local and global behavior near homoclinic orbits
    • Glendinning P., Sparrow C. Local and global behavior near homoclinic orbits. J. Stat. Phys. 1984, 35:645-696.
    • (1984) J. Stat. Phys. , vol.35 , pp. 645-696
    • Glendinning, P.1    Sparrow, C.2
  • 15
    • 11144332178 scopus 로고
    • On compact spaces which are locally Cantor bundles
    • Gutek A. On compact spaces which are locally Cantor bundles. Fund. Math. 1980, 108:27-31.
    • (1980) Fund. Math. , vol.108 , pp. 27-31
    • Gutek, A.1
  • 16
    • 11144318048 scopus 로고
    • Continua that are locally a bundle of arcs
    • Gutek A., van Mill J. Continua that are locally a bundle of arcs. Topology Proc. 1982, 7:63-69.
    • (1982) Topology Proc. , vol.7 , pp. 63-69
    • Gutek, A.1    van Mill, J.2
  • 17
    • 5544311017 scopus 로고
    • Existence of a homoclinic orbit of the Lorenz system by precise shooting
    • Hassard B., Zhang J. Existence of a homoclinic orbit of the Lorenz system by precise shooting. SIAM J. Math. Anal. 1994, 25(1):179-196.
    • (1994) SIAM J. Math. Anal. , vol.25 , Issue.1 , pp. 179-196
    • Hassard, B.1    Zhang, J.2
  • 18
    • 0002220884 scopus 로고
    • A computer proof that the Lorenz equations have "chaotic" solutions
    • Hassard B., Zhang J., Hastings S.P., Troy W.C. A computer proof that the Lorenz equations have "chaotic" solutions. Appl. Math. Lett. 1994, 7(1):79-83.
    • (1994) Appl. Math. Lett. , vol.7 , Issue.1 , pp. 79-83
    • Hassard, B.1    Zhang, J.2    Hastings, S.P.3    Troy, W.C.4
  • 19
    • 84967735795 scopus 로고
    • A shooting approach to the Lorenz equations
    • Hastings S.P., Troy W.C. A shooting approach to the Lorenz equations. Bulletin AMS 1992, 27:298-303.
    • (1992) Bulletin AMS , vol.27 , pp. 298-303
    • Hastings, S.P.1    Troy, W.C.2
  • 20
    • 0030147357 scopus 로고    scopus 로고
    • Global Aspects of Homoclinic Bifurcations of Vector Fields
    • AJ Homburg
    • Homburg A.J. Global Aspects of Homoclinic Bifurcations of Vector Fields. Memoirs of the AMS 1996, vol. 578:1-128. AJ Homburg.
    • (1996) Memoirs of the AMS , vol.578 , pp. 1-128
    • Homburg, A.J.1
  • 21
    • 77956987116 scopus 로고    scopus 로고
    • Homoclinic and heteroclinic bifurcations in vector fields
    • North-Holland, Amsterdam, H.W. Broer, F. Takens, B. Hasselblatt (Eds.)
    • Homburg A.J., Sandstede B. Homoclinic and heteroclinic bifurcations in vector fields. Handbook of Dynamical Systems 2010, vol. 3:379-524. North-Holland, Amsterdam. H.W. Broer, F. Takens, B. Hasselblatt (Eds.).
    • (2010) Handbook of Dynamical Systems , vol.3 , pp. 379-524
    • Homburg, A.J.1    Sandstede, B.2
  • 22
    • 77954651452 scopus 로고
    • The Lorenz system: I. The global structure of its stable manifolds
    • Jackson E.A. The Lorenz system: I. The global structure of its stable manifolds. Phys. Scr. 1985, 32(5):469-475.
    • (1985) Phys. Scr. , vol.32 , Issue.5 , pp. 469-475
    • Jackson, E.A.1
  • 23
    • 77954636223 scopus 로고
    • The Lorenz system: II. The homoclinic convolution of the stable manifolds
    • Jackson E.A. The Lorenz system: II. The homoclinic convolution of the stable manifolds. Phys. Scr. 1985, 32(5):476-481.
    • (1985) Phys. Scr. , vol.32 , Issue.5 , pp. 476-481
    • Jackson, E.A.1
  • 24
    • 0002822757 scopus 로고
    • Preturbulence: a regime observed in a fluid flow model of Lorenz
    • Kaplan J.L., Yorke J.A. Preturbulence: a regime observed in a fluid flow model of Lorenz. Comm. Math. Phys. 1979, 67:93-108.
    • (1979) Comm. Math. Phys. , vol.67 , pp. 93-108
    • Kaplan, J.L.1    Yorke, J.A.2
  • 25
    • 0027818453 scopus 로고
    • How indecomposable continua arise in dynamical systems
    • Kennedy J. How indecomposable continua arise in dynamical systems. Ann. New York Acad. Sci. 1993, 704:180-201.
    • (1993) Ann. New York Acad. Sci. , vol.704 , pp. 180-201
    • Kennedy, J.1
  • 26
    • 0348091154 scopus 로고    scopus 로고
    • Computing geodesic level sets on global (un)stable manifolds of vector fields
    • Krauskopf B., Osinga H.M. Computing geodesic level sets on global (un)stable manifolds of vector fields. SIAM J. Appl. Dyn. Syst. 2003, 2:546-569.
    • (2003) SIAM J. Appl. Dyn. Syst. , vol.2 , pp. 546-569
    • Krauskopf, B.1    Osinga, H.M.2
  • 27
    • 84892220342 scopus 로고    scopus 로고
    • Computing invariant manifolds via the continuation of orbit segments
    • Springer-Verlag, New York, B. Krauskopf, H.M. Osinga, J. Galán-Vioque (Eds.) Numerical Continuation Methods for Dynamical Systems
    • Krauskopf B., Osinga H.M. Computing invariant manifolds via the continuation of orbit segments. Underst. Complex Syst. 2007, 117-154. Springer-Verlag, New York. B. Krauskopf, H.M. Osinga, J. Galán-Vioque (Eds.).
    • (2007) Underst. Complex Syst. , pp. 117-154
    • Krauskopf, B.1    Osinga, H.M.2
  • 29
    • 0000241853 scopus 로고
    • Deterministic nonperiodic flows
    • Lorenz E.N. Deterministic nonperiodic flows. J. Atmospheric Sci. 1963, 20:130-141.
    • (1963) J. Atmospheric Sci. , vol.20 , pp. 130-141
    • Lorenz, E.N.1
  • 30
    • 57849131458 scopus 로고    scopus 로고
    • Suppression of the wrapping effect by Taylor model-based verified integrators: long-term stabilization by preconditioning
    • Makino K., Berz M. Suppression of the wrapping effect by Taylor model-based verified integrators: long-term stabilization by preconditioning. Int. J. Differ. Equ. Appl. 2005, 10:353-384.
    • (2005) Int. J. Differ. Equ. Appl. , vol.10 , pp. 353-384
    • Makino, K.1    Berz, M.2
  • 31
    • 81055142664 scopus 로고    scopus 로고
    • Computer assisted proof of chaoticity of the Lorenz system for large ranges of parameters presented at SciCADE 2011; and personal communication with M. Berz.
    • K. Makino, A. Wittig, M. Berz, S. Newhouse, Y. Zou, Computer assisted proof of chaoticity of the Lorenz system for large ranges of parameters presented at SciCADE 2011; and personal communication with M. Berz.
    • Makino, K.1    Wittig, A.2    Berz, M.3    Newhouse, S.4    Zou, Y.5
  • 32
    • 67650921905 scopus 로고    scopus 로고
    • Dynamics at infinity and the existence of singularly degenerate heteroclinic cycles in the Lorenz system
    • Messias M. Dynamics at infinity and the existence of singularly degenerate heteroclinic cycles in the Lorenz system. J. Phys. A 2009, 42:115101.
    • (2009) J. Phys. A , vol.42 , pp. 115101
    • Messias, M.1
  • 33
    • 0002403778 scopus 로고
    • Chaos in the Lorenz equations: a computer assisted proof
    • Mischaikow K., Mrozek M. Chaos in the Lorenz equations: a computer assisted proof. Bulletin AMS 1995, 32(1):66-72.
    • (1995) Bulletin AMS , vol.32 , Issue.1 , pp. 66-72
    • Mischaikow, K.1    Mrozek, M.2
  • 34
    • 0032393729 scopus 로고    scopus 로고
    • Chaos in the Lorenz equations: a computer assisted proof part II: details
    • Mischaikow K., Mrozek M. Chaos in the Lorenz equations: a computer assisted proof part II: details. Math. Comp. 1998, 67(223):1023-1046.
    • (1998) Math. Comp. , vol.67 , Issue.223 , pp. 1023-1046
    • Mischaikow, K.1    Mrozek, M.2
  • 35
    • 0035216342 scopus 로고    scopus 로고
    • Chaos in the Lorenz equations: a computer assisted proof part III: classical parameter values
    • Mischaikow K., Mrozek M., Szymczak A. Chaos in the Lorenz equations: a computer assisted proof part III: classical parameter values. J. Differential Equations 2001, 169:17-56.
    • (2001) J. Differential Equations , vol.169 , pp. 17-56
    • Mischaikow, K.1    Mrozek, M.2    Szymczak, A.3
  • 36
    • 0000935850 scopus 로고
    • 2
    • Amer. Math. Soc., Providence, RI
    • 2. Global Analysis 1970, 191-202. Amer. Math. Soc., Providence, RI.
    • (1970) Global Analysis , pp. 191-202
    • Newhouse, S.1
  • 38
    • 21144455517 scopus 로고
    • Intertwining invariant manifolds and Lorenz attractor
    • Springer-Verlag, Berlin, Global Theory of Dynamical Systems
    • Perelló C. Intertwining invariant manifolds and Lorenz attractor. Lecture Notes in Math. 1979, vol. 819:375-378. Springer-Verlag, Berlin.
    • (1979) Lecture Notes in Math. , vol.819 , pp. 375-378
    • Perelló, C.1
  • 39
    • 84971184328 scopus 로고
    • The topological classification of Lorenz attractors
    • Rand D. The topological classification of Lorenz attractors. Math. Proc. Cambridge Philos. Soc. 1978, 83:451-460.
    • (1978) Math. Proc. Cambridge Philos. Soc. , vol.83 , pp. 451-460
    • Rand, D.1
  • 40
    • 34250451946 scopus 로고
    • On the nature of turbulence
    • Ruelle D., Takens F. On the nature of turbulence. Comm. Math. Phys. 1971, 20(3):167-192.
    • (1971) Comm. Math. Phys. , vol.20 , Issue.3 , pp. 167-192
    • Ruelle, D.1    Takens, F.2
  • 41
    • 4243608749 scopus 로고    scopus 로고
    • Indecomposable continua and the characterization of strange sets in nonlinear dynamics
    • Sanjuán M.A.F., Kennedy J., Ott E., Yorke J.A. Indecomposable continua and the characterization of strange sets in nonlinear dynamics. Phys. Rev. Lett. 1997, 78(10):1892-1895.
    • (1997) Phys. Rev. Lett. , vol.78 , Issue.10 , pp. 1892-1895
    • Sanjuán, M.A.F.1    Kennedy, J.2    Ott, E.3    Yorke, J.A.4
  • 42
    • 0003293377 scopus 로고
    • The Lorenz Equations: Bifurcations, Chaos and Strange Attractors
    • Springer-Verlag, New York
    • Sparrow C. The Lorenz Equations: Bifurcations, Chaos and Strange Attractors. Appl. Math. Sci. 1982, vol. 41. Springer-Verlag, New York.
    • (1982) Appl. Math. Sci. , vol.41
    • Sparrow, C.1
  • 43
    • 0033563546 scopus 로고    scopus 로고
    • The Lorenz attractor exists
    • Tucker W. The Lorenz attractor exists. C. R. Acad. Sci. Ser. I 1999, 328(12):1197-1202.
    • (1999) C. R. Acad. Sci. Ser. I , vol.328 , Issue.12 , pp. 1197-1202
    • Tucker, W.1
  • 44
    • 0034259697 scopus 로고    scopus 로고
    • What's new on Lorenz strange attractors?
    • Viana M. What's new on Lorenz strange attractors?. Math. Intelligencer 2000, 22(3):6-19.
    • (2000) Math. Intelligencer , vol.22 , Issue.3 , pp. 6-19
    • Viana, M.1
  • 46
    • 0002573630 scopus 로고
    • Metastable chaos: the transition to sustained chaotic behavior in the Lorenz model
    • Yorke J.A., Yorke E.D. Metastable chaos: the transition to sustained chaotic behavior in the Lorenz model. J. Stat. Phys. 1979, 21:263-277.
    • (1979) J. Stat. Phys. , vol.21 , pp. 263-277
    • Yorke, J.A.1    Yorke, E.D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.