-
1
-
-
0000675441
-
The origin and structure of the Lorenz attractor
-
(in Russian)
-
Afrajmovich V.S., Bykov V.V., Sil'nikov L.P. The origin and structure of the Lorenz attractor. Dokl. Akad. Nauk SSSR 1977, 234(2):336-339. (in Russian).
-
(1977)
Dokl. Akad. Nauk SSSR
, vol.234
, Issue.2
, pp. 336-339
-
-
Afrajmovich, V.S.1
Bykov, V.V.2
Sil'nikov, L.P.3
-
2
-
-
79954562301
-
Investigating the consequences of global bifurcations for two-dimensional invariant manifolds of vector fields
-
Aguirre P., Doedel E.J., Krauskopf B., Osinga H.M. Investigating the consequences of global bifurcations for two-dimensional invariant manifolds of vector fields. Discrete Contin. Dyn. Syst. Ser. A 2011, 29(4):1309-1344.
-
(2011)
Discrete Contin. Dyn. Syst. Ser. A
, vol.29
, Issue.4
, pp. 1309-1344
-
-
Aguirre, P.1
Doedel, E.J.2
Krauskopf, B.3
Osinga, H.M.4
-
3
-
-
79959197178
-
Dynamical Systems and Chaos
-
Springer-Verlag, New York
-
Broer H.W., Takens F. Dynamical Systems and Chaos. Applied Mathematical Sciences 2011, vol. 172. Springer-Verlag, New York.
-
(2011)
Applied Mathematical Sciences
, vol.172
-
-
Broer, H.W.1
Takens, F.2
-
4
-
-
0030540448
-
Lorenz equations part I: existence and nonexistence of homoclinic orbits
-
Chen X. Lorenz equations part I: existence and nonexistence of homoclinic orbits. SIAM J. Matrix Anal. Appl. 1996, 27(4):1057-1069.
-
(1996)
SIAM J. Matrix Anal. Appl.
, vol.27
, Issue.4
, pp. 1057-1069
-
-
Chen, X.1
-
5
-
-
0011672661
-
Lorenz equations part II: "randomly" rotated homoclinic orbits and chaotic trajectories
-
Chen X. Lorenz equations part II: "randomly" rotated homoclinic orbits and chaotic trajectories. Discrete Contin. Dyn. Syst. 1996, 2:121-140.
-
(1996)
Discrete Contin. Dyn. Syst.
, vol.2
, pp. 121-140
-
-
Chen, X.1
-
6
-
-
81055132804
-
-
Lorenz equations part III: existence of hyperbolic sets, IMA Preprint Series, # 1354.
-
X. Chen, Lorenz equations part III: existence of hyperbolic sets, IMA Preprint Series, 1995, # 1354.
-
(1995)
-
-
Chen, X.1
-
7
-
-
7944238420
-
Knaster-like continua and complex dynamics
-
Devaney R.L. Knaster-like continua and complex dynamics. Ergodic Theory Dynam. Systems 1993, 13(4):627-634.
-
(1993)
Ergodic Theory Dynam. Systems
, vol.13
, Issue.4
, pp. 627-634
-
-
Devaney, R.L.1
-
8
-
-
84892356236
-
Lecture notes on numerical analysis of nonlinear equations
-
Springer-Verlag, New York, B. Krauskopf, H.M. Osinga, J. Galán-Vioque (Eds.) Numerical Continuation Methods for Dynamical Systems
-
Doedel E.J. Lecture notes on numerical analysis of nonlinear equations. Underst. Complex Syst. 2007, 1-49. Springer-Verlag, New York. B. Krauskopf, H.M. Osinga, J. Galán-Vioque (Eds.).
-
(2007)
Underst. Complex Syst.
, pp. 1-49
-
-
Doedel, E.J.1
-
9
-
-
81055153907
-
-
With major contributions from A. R. Champneys, T. F. Fairgrieve, Yu. A. Kuznetsov, B. E. Oldeman, R. C. Paffenroth, B. Sandstede, X. J. Wang, and C. Zhang. AUTO-07P: continuation and bifurcation software for ordinary differential equations. Available at: .
-
E.J. Doedel, With major contributions from A. R. Champneys, T. F. Fairgrieve, Yu. A. Kuznetsov, B. E. Oldeman, R. C. Paffenroth, B. Sandstede, X. J. Wang, and C. Zhang. AUTO-07P: continuation and bifurcation software for ordinary differential equations. Available at: http://cmvl.cs.concordia.ca/.
-
-
-
Doedel, E.J.1
-
11
-
-
0001201892
-
Computer assisted proof of chaos in the Lorenz equations
-
Galias Z., Zgliczynski P. Computer assisted proof of chaos in the Lorenz equations. Physica D 1998, 115:165-188.
-
(1998)
Physica D
, vol.115
, pp. 165-188
-
-
Galias, Z.1
Zgliczynski, P.2
-
12
-
-
0021437639
-
Local and global behavior near homoclinic orbits
-
Glendinning P., Sparrow C. Local and global behavior near homoclinic orbits. J. Stat. Phys. 1984, 35:645-696.
-
(1984)
J. Stat. Phys.
, vol.35
, pp. 645-696
-
-
Glendinning, P.1
Sparrow, C.2
-
13
-
-
0003478288
-
-
Springer-Verlag, New York, Berlin
-
Guckenheimer J., Holmes P. Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields 1986, Springer-Verlag, New York, Berlin. 2nd ed.
-
(1986)
Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields
-
-
Guckenheimer, J.1
Holmes, P.2
-
15
-
-
11144332178
-
On compact spaces which are locally Cantor bundles
-
Gutek A. On compact spaces which are locally Cantor bundles. Fund. Math. 1980, 108:27-31.
-
(1980)
Fund. Math.
, vol.108
, pp. 27-31
-
-
Gutek, A.1
-
16
-
-
11144318048
-
Continua that are locally a bundle of arcs
-
Gutek A., van Mill J. Continua that are locally a bundle of arcs. Topology Proc. 1982, 7:63-69.
-
(1982)
Topology Proc.
, vol.7
, pp. 63-69
-
-
Gutek, A.1
van Mill, J.2
-
17
-
-
5544311017
-
Existence of a homoclinic orbit of the Lorenz system by precise shooting
-
Hassard B., Zhang J. Existence of a homoclinic orbit of the Lorenz system by precise shooting. SIAM J. Math. Anal. 1994, 25(1):179-196.
-
(1994)
SIAM J. Math. Anal.
, vol.25
, Issue.1
, pp. 179-196
-
-
Hassard, B.1
Zhang, J.2
-
18
-
-
0002220884
-
A computer proof that the Lorenz equations have "chaotic" solutions
-
Hassard B., Zhang J., Hastings S.P., Troy W.C. A computer proof that the Lorenz equations have "chaotic" solutions. Appl. Math. Lett. 1994, 7(1):79-83.
-
(1994)
Appl. Math. Lett.
, vol.7
, Issue.1
, pp. 79-83
-
-
Hassard, B.1
Zhang, J.2
Hastings, S.P.3
Troy, W.C.4
-
19
-
-
84967735795
-
A shooting approach to the Lorenz equations
-
Hastings S.P., Troy W.C. A shooting approach to the Lorenz equations. Bulletin AMS 1992, 27:298-303.
-
(1992)
Bulletin AMS
, vol.27
, pp. 298-303
-
-
Hastings, S.P.1
Troy, W.C.2
-
20
-
-
0030147357
-
Global Aspects of Homoclinic Bifurcations of Vector Fields
-
AJ Homburg
-
Homburg A.J. Global Aspects of Homoclinic Bifurcations of Vector Fields. Memoirs of the AMS 1996, vol. 578:1-128. AJ Homburg.
-
(1996)
Memoirs of the AMS
, vol.578
, pp. 1-128
-
-
Homburg, A.J.1
-
21
-
-
77956987116
-
Homoclinic and heteroclinic bifurcations in vector fields
-
North-Holland, Amsterdam, H.W. Broer, F. Takens, B. Hasselblatt (Eds.)
-
Homburg A.J., Sandstede B. Homoclinic and heteroclinic bifurcations in vector fields. Handbook of Dynamical Systems 2010, vol. 3:379-524. North-Holland, Amsterdam. H.W. Broer, F. Takens, B. Hasselblatt (Eds.).
-
(2010)
Handbook of Dynamical Systems
, vol.3
, pp. 379-524
-
-
Homburg, A.J.1
Sandstede, B.2
-
22
-
-
77954651452
-
The Lorenz system: I. The global structure of its stable manifolds
-
Jackson E.A. The Lorenz system: I. The global structure of its stable manifolds. Phys. Scr. 1985, 32(5):469-475.
-
(1985)
Phys. Scr.
, vol.32
, Issue.5
, pp. 469-475
-
-
Jackson, E.A.1
-
23
-
-
77954636223
-
The Lorenz system: II. The homoclinic convolution of the stable manifolds
-
Jackson E.A. The Lorenz system: II. The homoclinic convolution of the stable manifolds. Phys. Scr. 1985, 32(5):476-481.
-
(1985)
Phys. Scr.
, vol.32
, Issue.5
, pp. 476-481
-
-
Jackson, E.A.1
-
24
-
-
0002822757
-
Preturbulence: a regime observed in a fluid flow model of Lorenz
-
Kaplan J.L., Yorke J.A. Preturbulence: a regime observed in a fluid flow model of Lorenz. Comm. Math. Phys. 1979, 67:93-108.
-
(1979)
Comm. Math. Phys.
, vol.67
, pp. 93-108
-
-
Kaplan, J.L.1
Yorke, J.A.2
-
25
-
-
0027818453
-
How indecomposable continua arise in dynamical systems
-
Kennedy J. How indecomposable continua arise in dynamical systems. Ann. New York Acad. Sci. 1993, 704:180-201.
-
(1993)
Ann. New York Acad. Sci.
, vol.704
, pp. 180-201
-
-
Kennedy, J.1
-
26
-
-
0348091154
-
Computing geodesic level sets on global (un)stable manifolds of vector fields
-
Krauskopf B., Osinga H.M. Computing geodesic level sets on global (un)stable manifolds of vector fields. SIAM J. Appl. Dyn. Syst. 2003, 2:546-569.
-
(2003)
SIAM J. Appl. Dyn. Syst.
, vol.2
, pp. 546-569
-
-
Krauskopf, B.1
Osinga, H.M.2
-
27
-
-
84892220342
-
Computing invariant manifolds via the continuation of orbit segments
-
Springer-Verlag, New York, B. Krauskopf, H.M. Osinga, J. Galán-Vioque (Eds.) Numerical Continuation Methods for Dynamical Systems
-
Krauskopf B., Osinga H.M. Computing invariant manifolds via the continuation of orbit segments. Underst. Complex Syst. 2007, 117-154. Springer-Verlag, New York. B. Krauskopf, H.M. Osinga, J. Galán-Vioque (Eds.).
-
(2007)
Underst. Complex Syst.
, pp. 117-154
-
-
Krauskopf, B.1
Osinga, H.M.2
-
28
-
-
14644389832
-
A survey of methods for computing (un)stable manifolds of vector fields
-
Krauskopf B., Osinga H.M., Doedel E.J., Henderson M.E., Guckenheimer J., Vladimirsky A., Dellnitz M., Junge O. A survey of methods for computing (un)stable manifolds of vector fields. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 2005, 15:763-791.
-
(2005)
Internat. J. Bifur. Chaos Appl. Sci. Engrg.
, vol.15
, pp. 763-791
-
-
Krauskopf, B.1
Osinga, H.M.2
Doedel, E.J.3
Henderson, M.E.4
Guckenheimer, J.5
Vladimirsky, A.6
Dellnitz, M.7
Junge, O.8
-
29
-
-
0000241853
-
Deterministic nonperiodic flows
-
Lorenz E.N. Deterministic nonperiodic flows. J. Atmospheric Sci. 1963, 20:130-141.
-
(1963)
J. Atmospheric Sci.
, vol.20
, pp. 130-141
-
-
Lorenz, E.N.1
-
30
-
-
57849131458
-
Suppression of the wrapping effect by Taylor model-based verified integrators: long-term stabilization by preconditioning
-
Makino K., Berz M. Suppression of the wrapping effect by Taylor model-based verified integrators: long-term stabilization by preconditioning. Int. J. Differ. Equ. Appl. 2005, 10:353-384.
-
(2005)
Int. J. Differ. Equ. Appl.
, vol.10
, pp. 353-384
-
-
Makino, K.1
Berz, M.2
-
31
-
-
81055142664
-
-
Computer assisted proof of chaoticity of the Lorenz system for large ranges of parameters presented at SciCADE 2011; and personal communication with M. Berz.
-
K. Makino, A. Wittig, M. Berz, S. Newhouse, Y. Zou, Computer assisted proof of chaoticity of the Lorenz system for large ranges of parameters presented at SciCADE 2011; and personal communication with M. Berz.
-
-
-
Makino, K.1
Wittig, A.2
Berz, M.3
Newhouse, S.4
Zou, Y.5
-
32
-
-
67650921905
-
Dynamics at infinity and the existence of singularly degenerate heteroclinic cycles in the Lorenz system
-
Messias M. Dynamics at infinity and the existence of singularly degenerate heteroclinic cycles in the Lorenz system. J. Phys. A 2009, 42:115101.
-
(2009)
J. Phys. A
, vol.42
, pp. 115101
-
-
Messias, M.1
-
33
-
-
0002403778
-
Chaos in the Lorenz equations: a computer assisted proof
-
Mischaikow K., Mrozek M. Chaos in the Lorenz equations: a computer assisted proof. Bulletin AMS 1995, 32(1):66-72.
-
(1995)
Bulletin AMS
, vol.32
, Issue.1
, pp. 66-72
-
-
Mischaikow, K.1
Mrozek, M.2
-
34
-
-
0032393729
-
Chaos in the Lorenz equations: a computer assisted proof part II: details
-
Mischaikow K., Mrozek M. Chaos in the Lorenz equations: a computer assisted proof part II: details. Math. Comp. 1998, 67(223):1023-1046.
-
(1998)
Math. Comp.
, vol.67
, Issue.223
, pp. 1023-1046
-
-
Mischaikow, K.1
Mrozek, M.2
-
35
-
-
0035216342
-
Chaos in the Lorenz equations: a computer assisted proof part III: classical parameter values
-
Mischaikow K., Mrozek M., Szymczak A. Chaos in the Lorenz equations: a computer assisted proof part III: classical parameter values. J. Differential Equations 2001, 169:17-56.
-
(2001)
J. Differential Equations
, vol.169
, pp. 17-56
-
-
Mischaikow, K.1
Mrozek, M.2
Szymczak, A.3
-
36
-
-
0000935850
-
2
-
Amer. Math. Soc., Providence, RI
-
2. Global Analysis 1970, 191-202. Amer. Math. Soc., Providence, RI.
-
(1970)
Global Analysis
, pp. 191-202
-
-
Newhouse, S.1
-
38
-
-
21144455517
-
Intertwining invariant manifolds and Lorenz attractor
-
Springer-Verlag, Berlin, Global Theory of Dynamical Systems
-
Perelló C. Intertwining invariant manifolds and Lorenz attractor. Lecture Notes in Math. 1979, vol. 819:375-378. Springer-Verlag, Berlin.
-
(1979)
Lecture Notes in Math.
, vol.819
, pp. 375-378
-
-
Perelló, C.1
-
39
-
-
84971184328
-
The topological classification of Lorenz attractors
-
Rand D. The topological classification of Lorenz attractors. Math. Proc. Cambridge Philos. Soc. 1978, 83:451-460.
-
(1978)
Math. Proc. Cambridge Philos. Soc.
, vol.83
, pp. 451-460
-
-
Rand, D.1
-
40
-
-
34250451946
-
On the nature of turbulence
-
Ruelle D., Takens F. On the nature of turbulence. Comm. Math. Phys. 1971, 20(3):167-192.
-
(1971)
Comm. Math. Phys.
, vol.20
, Issue.3
, pp. 167-192
-
-
Ruelle, D.1
Takens, F.2
-
41
-
-
4243608749
-
Indecomposable continua and the characterization of strange sets in nonlinear dynamics
-
Sanjuán M.A.F., Kennedy J., Ott E., Yorke J.A. Indecomposable continua and the characterization of strange sets in nonlinear dynamics. Phys. Rev. Lett. 1997, 78(10):1892-1895.
-
(1997)
Phys. Rev. Lett.
, vol.78
, Issue.10
, pp. 1892-1895
-
-
Sanjuán, M.A.F.1
Kennedy, J.2
Ott, E.3
Yorke, J.A.4
-
42
-
-
0003293377
-
The Lorenz Equations: Bifurcations, Chaos and Strange Attractors
-
Springer-Verlag, New York
-
Sparrow C. The Lorenz Equations: Bifurcations, Chaos and Strange Attractors. Appl. Math. Sci. 1982, vol. 41. Springer-Verlag, New York.
-
(1982)
Appl. Math. Sci.
, vol.41
-
-
Sparrow, C.1
-
43
-
-
0033563546
-
The Lorenz attractor exists
-
Tucker W. The Lorenz attractor exists. C. R. Acad. Sci. Ser. I 1999, 328(12):1197-1202.
-
(1999)
C. R. Acad. Sci. Ser. I
, vol.328
, Issue.12
, pp. 1197-1202
-
-
Tucker, W.1
-
44
-
-
0034259697
-
What's new on Lorenz strange attractors?
-
Viana M. What's new on Lorenz strange attractors?. Math. Intelligencer 2000, 22(3):6-19.
-
(2000)
Math. Intelligencer
, vol.22
, Issue.3
, pp. 6-19
-
-
Viana, M.1
-
46
-
-
0002573630
-
Metastable chaos: the transition to sustained chaotic behavior in the Lorenz model
-
Yorke J.A., Yorke E.D. Metastable chaos: the transition to sustained chaotic behavior in the Lorenz model. J. Stat. Phys. 1979, 21:263-277.
-
(1979)
J. Stat. Phys.
, vol.21
, pp. 263-277
-
-
Yorke, J.A.1
Yorke, E.D.2
|